Author
Listed:
- Samer Alhaddad
(Université PSL, CNRS
SharpEye SAS)
- Wajdene Ghouali
(Quinze-Vingts National Ophthalmology Hospital)
- Christophe Baudouin
(Quinze-Vingts National Ophthalmology Hospital)
- Albert Claude Boccara
(Université PSL, CNRS)
- Viacheslav Mazlin
(Université PSL, CNRS)
Abstract
Cellular imaging of the human anterior eye is critical for understanding complex ophthalmic diseases, yet current techniques are constrained by a limited field of view or insufficient contrast. Here, we demonstrate that Ernst Abbe’s foundational principles on the interference nature of transmission microscopy can be applied in vivo to the human eye to overcome these limitations. The transmission geometry in the eye is achieved by projecting illumination onto the posterior eye (sclera) and using the back-reflected light as a secondary illumination source for anterior eye structures. Specifically, we show that the tightly localized illumination spot at the sclera functions analogously to a closed condenser aperture in conventional microscopy, significantly enhancing interference contrast. This enables clear visualization of cells and nerves across all corneal layers within an extended 2 mm field of view. Notably, the crystalline lens epithelial cells, fibers, and sutures are also distinctly resolved. In patients, Fuch’s endothelial dystrophy - a major ophthalmic disease affecting 300 million people - is highlighted under a transmission contrast, providing complementary information to traditional reflection contrast. Constructed using consumer-grade cameras, the instrument offers a path toward broad adoption for pre-screening and surgical follow-up, as well as for diagnosing corneal infections in low-resource settings, where anterior eye diseases are most prevalent.
Suggested Citation
Samer Alhaddad & Wajdene Ghouali & Christophe Baudouin & Albert Claude Boccara & Viacheslav Mazlin, 2025.
"Transmission interference microscopy of anterior human eye,"
Nature Communications, Nature, vol. 16(1), pages 1-14, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62718-6
DOI: 10.1038/s41467-025-62718-6
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62718-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.