IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62535-x.html
   My bibliography  Save this article

Global warming reduces the carrying capacity of the tallest angiosperm species (Eucalyptus regnans)

Author

Listed:
  • Raphaël Trouvé

    (Food and Ecosystem Sciences)

  • Patrick J. Baker

    (Food and Ecosystem Sciences)

  • Mark J. Ducey

    (Department of Natural Resources and the Environment)

  • Andrew P. Robinson

    (CEBRA & School of BioSciences)

  • Craig R. Nitschke

    (Food and Ecosystem Sciences)

Abstract

Rising temperatures and increased frequency and intensity of droughts and heat waves have affected tree mortality rates worldwide. Here, we investigate how these changes have affected the carrying capacity of mountain ash forests (Eucalyptus regnans), the world’s tallest flowering plant and one of the most carbon-dense forests on earth. We analyze data from a large network of silvicultural experiments collected between 1947 and 2000 in southeastern Australia to identify trends in mortality rates and carrying capacity for the species, and to quantify how these changes relate to spatiotemporal variations in climate. We show that forests growing in the warmest and highest vapor pressure deficit conditions had the lowest carrying capacity, and this capacity further decreased with rising temperatures. Key findings indicate that a projected three °C increase in temperature by 2080 could reduce tree density and carbon stock in these forests by 24%, equivalent to losing 240,000 hectares of mature mountain ash forests. Trees that died were 0.62 times the size of living trees (i.e., they were suppressed), with no detectable effect of climate on this ratio. We discuss the implications for forest conservation and management, and how reduced carrying capacity could undermine global forest restoration and carbon sequestration efforts.

Suggested Citation

  • Raphaël Trouvé & Patrick J. Baker & Mark J. Ducey & Andrew P. Robinson & Craig R. Nitschke, 2025. "Global warming reduces the carrying capacity of the tallest angiosperm species (Eucalyptus regnans)," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62535-x
    DOI: 10.1038/s41467-025-62535-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62535-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62535-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Atticus E. L. Stovall & Herman H. Shugart & Xi Yang, 2020. "Reply to “Height-related changes in forest composition explain increasing tree mortality with height during an extreme drought”," Nature Communications, Nature, vol. 11(1), pages 1-4, December.
    2. Nathan L. Stephenson & Adrian J. Das, 2020. "Height-related changes in forest composition explain increasing tree mortality with height during an extreme drought," Nature Communications, Nature, vol. 11(1), pages 1-4, December.
    3. Atticus E. L. Stovall & Herman Shugart & Xi Yang, 2019. "Tree height explains mortality risk during an intense drought," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    4. L. Rowland & A. C. L. da Costa & D. R. Galbraith & R. S. Oliveira & O. J. Binks & A. A. R. Oliveira & A. M. Pullen & C. E. Doughty & D. B. Metcalfe & S. S. Vasconcelos & L. V. Ferreira & Y. Malhi & J., 2015. "Death from drought in tropical forests is triggered by hydraulics not carbon starvation," Nature, Nature, vol. 528(7580), pages 119-122, December.
    5. Hamish Clarke & Rachael H. Nolan & Victor Resco Dios & Ross Bradstock & Anne Griebel & Shiva Khanal & Matthias M. Boer, 2022. "Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Hans Pretzsch & Peter Biber & Gerhard Schütze & Enno Uhl & Thomas Rötzer, 2014. "Forest stand growth dynamics in Central Europe have accelerated since 1870," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    7. David Bauman & Claire Fortunel & Guillaume Delhaye & Yadvinder Malhi & Lucas A. Cernusak & Lisa Patrick Bentley & Sami W. Rifai & Jesús Aguirre-Gutiérrez & Imma Oliveras Menor & Oliver L. Phillips & B, 2022. "Tropical tree mortality has increased with rising atmospheric water stress," Nature, Nature, vol. 608(7923), pages 528-533, August.
    8. Nathan G. McDowell & Craig D. Allen, 2015. "Darcy's law predicts widespread forest mortality under climate warming," Nature Climate Change, Nature, vol. 5(7), pages 669-672, July.
    9. Peters, Ronny & Olagoke, Adewole & Berger, Uta, 2018. "A new mechanistic theory of self-thinning: Adaptive behaviour of plants explains the shape and slope of self-thinning trajectories," Ecological Modelling, Elsevier, vol. 390(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin Ma & Yanjun Su & Chunyue Niu & Qin Ma & Tianyu Hu & Xiangzhong Luo & Xiaonan Tai & Tong Qiu & Yao Zhang & Roger C. Bales & Lingli Liu & Maggi Kelly & Qinghua Guo, 2023. "Tree mortality during long-term droughts is lower in structurally complex forest stands," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Zihe, Liu & Guodong, Jia & Xinxiao, Yu & Weiwei, Lu & Libo, Sun & Yusong, Wang & Baheti, Zierdie, 2021. "Morphological trait as a determining factor for Populus simonii Carr. to survive from drought in semi-arid region," Agricultural Water Management, Elsevier, vol. 253(C).
    3. de Assis Prado, Carlos Henrique Britto & de Brito Melo Trovão, Dilma Maria, 2023. "The woody crown network model incorporates maximum height," Ecological Modelling, Elsevier, vol. 481(C).
    4. William M. Hammond & A. Park Williams & John T. Abatzoglou & Henry D. Adams & Tamir Klein & Rosana López & Cuauhtémoc Sáenz-Romero & Henrik Hartmann & David D. Breshears & Craig D. Allen, 2022. "Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Zamora-Pereira, Juan Carlos & Hanewinkel, Marc & Yousefpour, Rasoul, 2023. "Robust management strategies promoting ecological resilience and economic efficiency of a mixed conifer-broadleaf forest in Southwest Germany under the risk of severe drought," Ecological Economics, Elsevier, vol. 209(C).
    6. Stankova, Tatiana V. & González-Rodríguez, Miguel Ángel & Diéguez-Aranda, Ulises & Ferezliev, Angel & Dimitrova, Proletka & Kolev, Kristiyan & Stefanova, Penka, 2024. "Productivity-environment models for Scots pine plantations in Bulgaria: an interaction of anthropogenic origin peculiarities and climate change," Ecological Modelling, Elsevier, vol. 490(C).
    7. Marine Lanet & Laurent Li & Hervé Le Treut, 2024. "A framework to assess climate change effects on surface air temperature and soil moisture and application to Southwestern France," Climatic Change, Springer, vol. 177(12), pages 1-17, December.
    8. Laxita Soontha & Mohammad Younus Bhat, 2024. "Preserving health, protecting economies: Mitigating the impact of forest fires on healthcare expenditure and environmental sustainability," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(3), pages 2066-2084, June.
    9. Michal Synek & Emil Cienciala & Jaroslav Kubišta, 2025. "Carbon storage and climate mitigation effect in Central European forestry - To be managed, or left unmanaged?," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 71(3), pages 149-158.
    10. Simon P. K. Bowring & Wei Li & Florent Mouillot & Thais M. Rosan & Philippe Ciais, 2024. "Road fragment edges enhance wildfire incidence and intensity, while suppressing global burned area," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Tyson L Swetnam & Christopher D O’Connor & Ann M Lynch, 2016. "Tree Morphologic Plasticity Explains Deviation from Metabolic Scaling Theory in Semi-Arid Conifer Forests, Southwestern USA," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-16, July.
    12. Laraib Ahmad & Sameer Saran, 2024. "Anthropogenic evidences as precursors to forest fire trigger in Western Himalayan Region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 16827-16846, July.
    13. Stavros Tsiantikoudis & Eleni Zafeiriou & Grigorios Kyriakopoulos & Garyfallos Arabatzis, 2019. "Revising the Environmental Kuznets Curve for Deforestation: An Empirical Study for Bulgaria," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    14. Foster, Adrianna C. & Shuman, Jacquelyn K. & Shugart, Herman H. & Dwire, Kathleen A. & Fornwalt, Paula J. & Sibold, Jason & Negron, Jose, 2017. "Validation and application of a forest gap model to the southern Rocky Mountains," Ecological Modelling, Elsevier, vol. 351(C), pages 109-128.
    15. Liu, Qiuyu & Peng, Changhui & Schneider, Robert & Cyr, Dominic & Liu, Zelin & Zhou, Xiaolu & Kneeshaw, Daniel, 2021. "TRIPLEX-Mortality model for simulating drought-induced tree mortality in boreal forests: Model development and evaluation," Ecological Modelling, Elsevier, vol. 455(C).
    16. Forrester, David I. & England, Jacqueline R. & Paul, Keryn I. & Roxburgh, Stephen H., 2024. "Sensitivity analysis of the FullCAM model: Context dependency and implications for model development to predict Australia's forest carbon stocks," Ecological Modelling, Elsevier, vol. 489(C).
    17. Zdeněk Vacek & Ivana Tomášková & Zdeněk Fuchs & Václav Šimůnek & Stanislav Vacek & Jan Cukor & Lukáš Bílek & Josef Gallo & Karel Zlatuška & Martin Duchan, 2025. "Impact of technical water retention on European beech (Fagus sylvatica L.) resilience and growth dynamics," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 71(3), pages 124-137.
    18. Cho, Nanghyun & Agossou, Casimir & Kim, Eunsook & Lim, Jong-Hwan & Seo, Jeong-Wook & Kang, Sinkyu, 2023. "Machine-learning modeling on tree mortality and growth reduction of temperate forests with climatic and ecophysiological parameters," Ecological Modelling, Elsevier, vol. 483(C).
    19. Rius, Bianca Fazio & Filho, João Paulo Darela & Fleischer, Katrin & Hofhansl, Florian & Blanco, Carolina Casagrande & Rammig, Anja & Domingues, Tomas Ferreira & Lapola, David Montenegro, 2023. "Higher functional diversity improves modeling of Amazon forest carbon storage," Ecological Modelling, Elsevier, vol. 481(C).
    20. Antonín MARTINÍK & Zdeněk ADAMEC & Jakub HOUŠKA, 2017. "Production and soil restoration effect of pioneer tree species in a region of allochthonous Norway spruce dieback," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 63(1), pages 34-44.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62535-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.