Author
Listed:
- Tommer D. Keidar
(Tel Aviv University
Tel Aviv University
Tel Aviv University)
- Ofir Blumer
(Tel Aviv University
Tel Aviv University
Tel Aviv University)
- Barak Hirshberg
(Tel Aviv University
Tel Aviv University
Tel Aviv University)
- Shlomi Reuveni
(Tel Aviv University
Tel Aviv University
Tel Aviv University)
Abstract
Stochastic resetting, the procedure of stopping and re-initializing random processes, has recently emerged as a powerful tool for accelerating processes ranging from queuing systems to molecular simulations. However, its usefulness is severely limited by assuming that the resetting protocol is completely decoupled from the state and age of the process that is being reset. We present a general formulation for state- and time-dependent resetting of stochastic processes, which we call adaptive resetting. This allows us to predict, using a single set of trajectories without resetting and via a simple reweighing procedure, all key observables of processes with adaptive resetting. These include the first-passage time distribution, the propagator, and the steady-state. Our formulation enables efficient exploration of informed search strategies and facilitates the prediction and design of complex non-equilibrium steady-states, eliminating the need for extensive brute-force sampling across different resetting protocols. Finally, we develop a general machine learning framework to optimize the adaptive resetting protocol for an arbitrary task beyond the current state of the art. We use it to discover efficient protocols for accelerating molecular dynamics simulations.
Suggested Citation
Tommer D. Keidar & Ofir Blumer & Barak Hirshberg & Shlomi Reuveni, 2025.
"Adaptive resetting for informed search strategies and the design of non-equilibrium steady-states,"
Nature Communications, Nature, vol. 16(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62398-2
DOI: 10.1038/s41467-025-62398-2
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62398-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.