IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62394-6.html
   My bibliography  Save this article

Dual-mode narrowband organic photodetectors for self-aligned imaging in NIR-I and NIR-II

Author

Listed:
  • Yu Tang

    (Hong Kong Baptist University)

  • Zhuangmiao Wang

    (Hong Kong Baptist University)

  • Mingsheng Gao

    (Hong Kong Baptist University)

  • Jiayin Han

    (Hong Kong Baptist University)

  • Leiming Yuan

    (Hong Kong Baptist University
    Wenzhou University)

  • Furong Zhu

    (Hong Kong Baptist University)

Abstract

The ability to detect and image in the near-infrared (NIR) regions, specifically NIR-I (700–900 nm) and NIR-II (1000–1700 nm), is crucial for medical diagnostics and bioimaging due to their exceptional tissue penetration and absorption characteristics. Organic photodetectors (OPDs) present a promising solution for self-aligned imaging in these regions, due to their tunable optoelectronic properties and flexible fabrication processes. However, achieving high-performance dual-mode narrowband OPDs for NIR-I and NIR-II detection remains a significant challenge due to the inherently broadband nature of most organic semiconductor materials. In this study, we introduce a bias-switchable dual-mode narrowband OPD with a back-to-back stacked charge collection narrowing/photodiode-type double bulk heterojunction (BHJ) architecture. The dual-mode narrowband OPD exhibits excellent wavelength selectivity and enhanced imaging capabilities, facilitating self-aligned imaging in both NIR-I and NIR-II regions. Additionally, the double BHJ architecture provides design flexibility, allowing for the realization of dual-mode narrowband responses through various BHJ configurations.

Suggested Citation

  • Yu Tang & Zhuangmiao Wang & Mingsheng Gao & Jiayin Han & Leiming Yuan & Furong Zhu, 2025. "Dual-mode narrowband organic photodetectors for self-aligned imaging in NIR-I and NIR-II," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62394-6
    DOI: 10.1038/s41467-025-62394-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62394-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62394-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bernhard Siegmund & Andreas Mischok & Johannes Benduhn & Olaf Zeika & Sascha Ullbrich & Frederik Nehm & Matthias Böhm & Donato Spoltore & Hartmut Fröb & Christian Körner & Karl Leo & Koen Vandewal, 2017. "Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption," Nature Communications, Nature, vol. 8(1), pages 1-6, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen Xing & Eva Bittrich & Vasiliki Prifti & Stephanie Buchholtz & Yuan Liu & Louis Conrad Winkler & Maximilian F. X. Dorfner & Mikhail Malanin & Mingchao Wang & Guoqin Liu & Dinara Samigullina & Anna, 2025. "Light-induced fine-tuning of optical cavities for organic optoelectronic devices," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    2. Quan Liu & Stefan Zeiske & Xueshi Jiang & Derese Desta & Sigurd Mertens & Sam Gielen & Rachith Shanivarasanthe & Hans-Gerd Boyen & Ardalan Armin & Koen Vandewal, 2022. "Electron-donating amine-interlayer induced n-type doping of polymer:nonfullerene blends for efficient narrowband near-infrared photo-detection," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Kai Müller & Karl S. Schellhammer & Nico Gräßler & Bipasha Debnath & Fupin Liu & Yulia Krupskaya & Karl Leo & Martin Knupfer & Frank Ortmann, 2023. "Directed exciton transport highways in organic semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Andreas Mischok & Bernhard Siegmund & Florian Le Roux & Sabina Hillebrandt & Koen Vandewal & Malte C. Gather, 2024. "Breaking the angular dispersion limit in thin film optics by ultra-strong light-matter coupling," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Xiaopeng Feng & Chenglong Li & Jinmei Song & Yuhong He & Wei Qu & Weijun Li & Keke Guo & Lulu Liu & Bai Yang & Haotong Wei, 2024. "Differential perovskite hemispherical photodetector for intelligent imaging and location tracking," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Wenjie Deng & Zilong Zheng & Jingzhen Li & Rongkun Zhou & Xiaoqing Chen & Dehui Zhang & Yue Lu & Chongwu Wang & Congya You & Songyu Li & Ling Sun & Yi Wu & Xuhong Li & Boxing An & Zheng Liu & Qi jie W, 2022. "Electrically tunable two-dimensional heterojunctions for miniaturized near-infrared spectrometers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62394-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.