IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62388-4.html
   My bibliography  Save this article

Flexibility meets rigidity: a self-assembled monolayer materials strategy for perovskite solar cells

Author

Listed:
  • Jie Yang

    (Henan University)

  • Geping Qu

    (Southern University of Science and Technology
    City University of Hong Kong)

  • Ying Qiao

    (Southern University of Science and Technology
    The Hong Kong Polytechnic University)

  • Siyuan Cai

    (Southern University of Science and Technology)

  • Jiayu Hu

    (Henan University)

  • Shaoyu Geng

    (Henan University)

  • Ya Li

    (Henan University)

  • Yeming Jin

    (Henan University)

  • Nan Shen

    (Henan University)

  • Shi Chen

    (Henan University)

  • Alex K.-Y. Jen

    (City University of Hong Kong
    City University of Hong Kong
    University of Washington
    City University of Hong Kong)

  • Zong-Xiang Xu

    (Southern University of Science and Technology
    Southern University of Science and Technology)

Abstract

Self-assembled monolayer (SAM) materials have emerged as promising materials for interface engineering in perovskite solar cells. However, achieving an optimal balance between molecular packing density, charge transport efficiency, and defect passivation remains a challenge. In this work, we propose a SAM material design strategy that synergizes flexible head groups with rigid linking groups. Using (4-(diphenylamino)phenyl)phosphonic acid as a model molecule, Compared to traditional materials such as (4-(9H-carbazol-9-yl)phenyl)phosphonic acid and (4-(diphenylamino)phenethyl)phosphonic acid, our material generates a high-quality perovskite layer. This design achieves superior energy level alignment, improved hole extraction, and enhanced charge transport efficiency, effectively reducing non-radiative recombination. (4-(diphenylamino)phenyl)phosphonic acid-based device achieve power conversion efficiency of 26.21% and 24.49% for small- (0.0715 cm2) and large-area (1 cm2), respectively. This work establishes an effective approach to SAM molecular design, providing a clear pathway for improving both the efficiency and long-term stability of perovskite solar cells through interface engineering.

Suggested Citation

  • Jie Yang & Geping Qu & Ying Qiao & Siyuan Cai & Jiayu Hu & Shaoyu Geng & Ya Li & Yeming Jin & Nan Shen & Shi Chen & Alex K.-Y. Jen & Zong-Xiang Xu, 2025. "Flexibility meets rigidity: a self-assembled monolayer materials strategy for perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62388-4
    DOI: 10.1038/s41467-025-62388-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62388-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62388-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. So Min Park & Mingyang Wei & Nikolaos Lempesis & Wenjin Yu & Tareq Hossain & Lorenzo Agosta & Virginia Carnevali & Harindi R. Atapattu & Peter Serles & Felix T. Eickemeyer & Heejong Shin & Maral Vafai, 2023. "Low-loss contacts on textured substrates for inverted perovskite solar cells," Nature, Nature, vol. 624(7991), pages 289-294, December.
    2. Geping Qu & Letian Zhang & Ying Qiao & Shaokuan Gong & Yuanjia Ding & Yuli Tao & Siyuan Cai & Xiao-Yong Chang & Qian Chen & Pengfei Xie & Junyuan Feng & Changqin Gao & Guopeng Li & Hui Xiao & Fei Wang, 2025. "Self-assembled materials with an ordered hydrophilic bilayer for high performance inverted Perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    3. Jin Wen & Yicheng Zhao & Pu Wu & Yuxuan Liu & Xuntian Zheng & Renxing Lin & Sushu Wan & Ke Li & Haowen Luo & Yuxi Tian & Ludong Li & Hairen Tan, 2023. "Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Shuai You & Felix T. Eickemeyer & Jing Gao & Jun-Ho Yum & Xin Zheng & Dan Ren & Meng Xia & Rui Guo & Yaoguang Rong & Shaik M. Zakeeruddin & Kevin Sivula & Jiang Tang & Zhongjin Shen & Xiong Li & Micha, 2023. "Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells," Nature Energy, Nature, vol. 8(5), pages 515-525, May.
    5. Dongyang Li & Qing Lian & Tao Du & Ruijie Ma & Heng Liu & Qiong Liang & Yu Han & Guojun Mi & Ouwen Peng & Guihua Zhang & Wenbo Peng & Baomin Xu & Xinhui Lu & Kuan Liu & Jun Yin & Zhiwei Ren & Gang Li , 2024. "Co-adsorbed self-assembled monolayer enables high-performance perovskite and organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Sanwan Liu & Jingbai Li & Wenshan Xiao & Rui Chen & Zhenxing Sun & Yong Zhang & Xia Lei & Shuaifeng Hu & Manuel Kober-Czerny & Jianan Wang & Fumeng Ren & Qisen Zhou & Hasan Raza & You Gao & Yitong Ji , 2024. "Buried interface molecular hybrid for inverted perovskite solar cells," Nature, Nature, vol. 632(8025), pages 536-542, August.
    7. Yurui Wang & Renxing Lin & Chenshuaiyu Liu & Xiaoyu Wang & Cullen Chosy & Yuki Haruta & Anh Dinh Bui & Minghui Li & Hongfei Sun & Xuntian Zheng & Haowen Luo & Pu Wu & Han Gao & Wenjie Sun & Yuefeng Ni, 2024. "Homogenized contact in all-perovskite tandems using tailored 2D perovskite," Nature, Nature, vol. 635(8040), pages 867-873, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingnan Wang & Boxin Jiao & Ruijia Tian & Kexuan Sun & Yuanyuan Meng & Yang Bai & Xiaoyi Lu & Bin Han & Ming Yang & Yaohua Wang & Shujing Zhou & Haibin Pan & Zhenhuan Song & Chuanxiao Xiao & Chang Liu, 2025. "Less-acidic boric acid-functionalized self-assembled monolayer for mitigating NiOx corrosion for efficient all-perovskite tandem solar cells," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    2. Chenyang Shi & Jianan Wang & Xia Lei & Qisen Zhou & Weitao Wang & Zhichun Yang & Sanwan Liu & Jiaqi Zhang & He Zhu & Rui Chen & Yongyan Pan & Zhengtian Tan & Wenguang Liu & Zhengjing Zhao & Zihe Cai &, 2025. "Modulating competitive adsorption of hybrid self-assembled molecules for efficient wide-bandgap perovskite solar cells and tandems," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    3. Yingping Fan & Zhixiao Qin & Lei Lu & Ni Zhang & Yugang Liang & Shaowei Wang & Wenji Zhan & Jiahao Guo & Haifei Wang & Yuetian Chen & Yanfeng Miao & Yixin Zhao, 2025. "An efficient and precise solution-vacuum hybrid batch fabrication of 2D/3D perovskite submodules," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    4. Yang Bai & Yuanyuan Meng & Ming Yang & Ruijia Tian & Jingnan Wang & Boxin Jiao & Haibin Pan & Jiangwei Gao & Yaohua Wang & Kexuan Sun & Shujing Zhou & Xiaoyi Lu & Zhenhua Song & Chang Liu & Ziyi Ge, 2025. "Lattice stabilization and strain homogenization in Sn-Pb bottom subcells enable stable all-perovskite tandems solar cells," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    5. Jike Ding & Yunxiao Liao & Hao Liu & Yong Ding & Quanxing Ma & Mengjia Li & Zuoling Zhang & Jiajia Zhang & Jian-Xin Tang & Jiang Sheng & Jiangzhao Chen & Cong Chen, 2025. "Stabilizing buried interface by bilateral bond strength equilibrium strategy toward efficient perovskite photovoltaics," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    6. Mengjiong Chen & Zhenzhen Qin & Ziyang Zhang & Wenxiang Xiang & Yingming Liu & Chuang Tian & Siyuan Chen & Yanbo Wang & Liyuan Han, 2025. "Low-temperature sequential deposition for efficient inverted perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    7. Hyeji Han & Siwon Yun & Zobia Irshad & Wonjong Lee & Min Kim & Jongchul Lim & Jinseck Kim, 2025. "Vacuum Processability of Self-Assembled Monolayers and Their Chemical Interaction with Perovskite Interfaces," Energies, MDPI, vol. 18(7), pages 1-22, April.
    8. Jingwei Zhu & Xiaozhen Huang & Yi Luo & Wenbo Jiao & Yuliang Xu & Juncheng Wang & Zhiyu Gao & Kun Wei & Tianshu Ma & Jiayu You & Jialun Jin & Shenghan Wu & Zhihao Zhang & Wenqing Liang & Yang Wang & S, 2025. "Self-assembled hole-selective contact for efficient Sn-Pb perovskite solar cells and all-perovskite tandems," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    9. Yuchen Yuan & Houlin Li & Haiqiang Luo & Yang Zhang & Xiaoli Li & Ting Jiang & Yajie Yang & Lei Liu & Baoyan Fan & Xia Hao, 2025. "A Comprehensive Review of Self-Assembled Monolayers as Hole-Transport Layers in Inverted Perovskite Solar Cells," Energies, MDPI, vol. 18(10), pages 1-45, May.
    10. Vishal Yeddu & Khulud Almasabi & Yafeng Xu & Augusto Amaro & Shuang Qiu & Sergey Dayneko & Dongyang Zhang & Parinaz Moazzezi & Christopher Tremblay & Muhammad Naufal Lintangpradipto & Heather L. Buckl, 2025. "In-situ self-assembly of hole transport monolayer during crystallization for efficient single-crystal perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    11. Yang Peng & Yu Chen & Jing Zhou & Chuan Luo & Weijian Tang & Yuwei Duan & Yihui Wu & Qiang Peng, 2025. "Enlarging moment and regulating orientation of buried interfacial dipole for efficient inverted perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    12. Yulu Sun & Ruoyao Xu & Jinfei Dai & Hebing Tang & Jungang Wang & Weilun Cai & Peizhou Li & Jie Xu & Fang Yuan & Bo Jiao & Jingrui Li & Zhaoxin Wu & Hua Dong, 2025. "In situ coordinated HTL strategy for high-performance and scalable perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    13. Geping Qu & Letian Zhang & Ying Qiao & Shaokuan Gong & Yuanjia Ding & Yuli Tao & Siyuan Cai & Xiao-Yong Chang & Qian Chen & Pengfei Xie & Junyuan Feng & Changqin Gao & Guopeng Li & Hui Xiao & Fei Wang, 2025. "Self-assembled materials with an ordered hydrophilic bilayer for high performance inverted Perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    14. Liming Du & Fangfang Cao & Rui Meng & Yueying Zhang & Junchuan Zhang & Zhiyu Gao & Cong Chen & Can Li & Dewei Zhao & Jichun Ye & Zhen Li & Chuanxiao Xiao, 2025. "Photo-homogenization assisted segregation easing technique (PHASET) for highly efficient and stable wide-bandgap perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    15. Junzhi Ye & Navendu Mondal & Ben P. Carwithen & Yunwei Zhang & Linjie Dai & Xiang-Bing Fan & Jian Mao & Zhiqiang Cui & Pratyush Ghosh & Clara Otero‐Martínez & Lars Turnhout & Yi-Teng Huang & Zhongzhen, 2024. "Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Wang, Zixuan & Chen, Zijian & Wang, Boyuan & Wu, Chuang & Zhou, Chao & Peng, Yang & Zhang, Xinyu & Ni, Zongming & Chung, Chi-yung & Chan, Ching-chuen & Yang, Jian & Zhao, Haitao, 2025. "Digital manufacturing of perovskite materials and solar cells," Applied Energy, Elsevier, vol. 377(PB).
    17. Jianan Wang & Shuaifeng Hu & He Zhu & Sanwan Liu & Zhongyong Zhang & Rui Chen & Junke Wang & Chenyang Shi & Jiaqi Zhang & Wentao Liu & Xia Lei & Bin Liu & Yongyan Pan & Fumeng Ren & Hasan Raza & Qisen, 2025. "Mercapto-functionalized scaffold improves perovskite buried interfaces for tandem photovoltaics," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    18. Yixin Luo & Yuan Tian & Ke Zhao & Weiping Mao & Chen Liu & Jiahui Shen & Zhendong Cheng & Caner Değer & Xiaohe Miao & Zhongwei Zhang & Xuechun Sun & Libing Yao & Xu Zhang & Pengju Shi & Donger Jin & J, 2025. "Inductive effects in molecular contacts enable wide-bandgap perovskite cells for efficient perovskite/TOPCon tandems," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    19. Hongcai Tang & Yangzi Shen & Ge Yan & Liyuan Han & Qifeng Han, 2025. "Confining iodide migration with quantified barrier for durable perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    20. Wang, Qinger & Huang, Yuewu & Sun, Wenchao, 2025. "Performance analysis of a coupled concentrated spectrum splitting perovskite solar cell and thermally regenerative electrochemical cycles system," Renewable Energy, Elsevier, vol. 244(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62388-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.