IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62349-x.html
   My bibliography  Save this article

A multicellular self-organized probiotic platform for oral delivery enhances intestinal colonization

Author

Listed:
  • Hua Liu

    (Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
    Ruijin Hospital, Shanghai Jiao Tong University School of Medicine)

  • Zhijie Chen

    (Ruijin Hospital, Shanghai Jiao Tong University School of Medicine)

  • Qiaowen Lin

    (Ruijin Hospital, Shanghai Jiao Tong University School of Medicine)

  • Yi Chen

    (Ruijin Hospital, Shanghai Jiao Tong University School of Medicine)

  • Liwen Hong

    (Ruijin Hospital, Shanghai Jiao Tong University School of Medicine)

  • Jie Zhong

    (Ruijin Hospital, Shanghai Jiao Tong University School of Medicine)

  • Zhengwei Cai

    (Ruijin Hospital, Shanghai Jiao Tong University School of Medicine)

  • Zhengting Wang

    (Ruijin Hospital, Shanghai Jiao Tong University School of Medicine)

  • Wenguo Cui

    (Ruijin Hospital, Shanghai Jiao Tong University School of Medicine)

Abstract

Stable gut colonization of probiotics is essential for sustained therapeutic effects, however traditional oral probiotic supplements often fail to adapt to the gut environment. Here, based on the observation that multicellular microcolonies instead of planktonic bacteria display a more advantageous gene pattern for colonization, we design a system encapsulating multicellular self-organized probiotic microcolonies, termed Express Microcolony Service (EMS), for efficient oral delivery and enhanced gut colonization of probiotics. Utilizing the stress-relaxing and acid-resistant property of the covalent-ionic crosslinking alginate hydrogel microsphere, the micro-cargo provides tunable nutrient supply and extracellular matrix support to facilitate microcolony self-organization. Notably, we show that the variable spatial constraints of the stress-relaxing hydrogel could modulate the viability and colonization potential of microcolonies. In vitro, bacteria microcolonies in EMS show remarkable resistance to gastric acid, bile salts, and antibiotics, compared with planktonic probiotics. In vivo, the EMS strategy exhibits 89- and 52-fold higher colonization rate in the cecum and colon of mice, compared to conventional oral probiotics. The multicellular self-organized EMS system offers an innovative, efficient and clinically transformable alternative for probiotic therapy.

Suggested Citation

  • Hua Liu & Zhijie Chen & Qiaowen Lin & Yi Chen & Liwen Hong & Jie Zhong & Zhengwei Cai & Zhengting Wang & Wenguo Cui, 2025. "A multicellular self-organized probiotic platform for oral delivery enhances intestinal colonization," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62349-x
    DOI: 10.1038/s41467-025-62349-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62349-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62349-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhenping Cao & Xinyue Wang & Yan Pang & Shanshan Cheng & Jinyao Liu, 2019. "Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Huilong Luo & Yanmei Chen & Xiao Kuang & Xinyue Wang & Fengmin Yang & Zhenping Cao & Lu Wang & Sisi Lin & Feng Wu & Jinyao Liu, 2022. "Chemical reaction-mediated covalent localization of bacteria," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Marvin Whiteley & Stephen P. Diggle & E. Peter Greenberg, 2017. "Progress in and promise of bacterial quorum sensing research," Nature, Nature, vol. 551(7680), pages 313-320, November.
    4. Ovijit Chaudhuri & Justin Cooper-White & Paul A. Janmey & David J. Mooney & Vivek B. Shenoy, 2020. "Effects of extracellular matrix viscoelasticity on cellular behaviour," Nature, Nature, vol. 584(7822), pages 535-546, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantin Amelin & Oleg Granichin & Anna Sergeenko & Zeev V. Volkovich, 2021. "Emergent Intelligence via Self-Organization in a Group of Robotic Devices," Mathematics, MDPI, vol. 9(12), pages 1-15, June.
    2. Huimin He & Xi Wei & Bin Yang & Hongzhen Liu & Mingze Sun & Yanran Li & Aixin Yan & Chuyang Y. Tang & Yuan Lin & Lizhi Xu, 2022. "Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric nanofibers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Bin Xue & Zhengyu Xu & Lan Li & Kaiqiang Guo & Jing Mi & Haipeng Wu & Yiran Li & Chunmei Xie & Jing Jin & Juan Xu & Chunping Jiang & Xiaosong Gu & Meng Qin & Qing Jiang & Yi Cao & Wei Wang, 2025. "Hydrogels with programmed spatiotemporal mechanical cues for stem cell-assisted bone regeneration," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    4. Yifan Wu & Yang Song & Jennifer Soto & Tyler Hoffman & Xiao Lin & Aaron Zhang & Siyu Chen & Ramzi N. Massad & Xiao Han & Dongping Qi & Kun-Wei Yeh & Zhiwei Fang & Joon Eoh & Luo Gu & Amy C. Rowat & Zh, 2025. "Viscoelastic extracellular matrix enhances epigenetic remodeling and cellular plasticity," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    5. Mairead K. Heavey & Anthony Hazelton & Yuyan Wang & Mitzy Garner & Aaron C. Anselmo & Janelle C. Arthur & Juliane Nguyen, 2024. "Targeted delivery of the probiotic Saccharomyces boulardii to the extracellular matrix enhances gut residence time and recovery in murine colitis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Feipeng Chen & Xiufeng Li & Yafeng Yu & Qingchuan Li & Haisong Lin & Lizhi Xu & Ho Cheung Shum, 2023. "Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Anna Maslovskaya & Yixuan Shuai & Christina Kuttler, 2025. "The Allen–Cahn-Based Approach to Cross-Scale Modeling Bacterial Growth Controlled by Quorum Sensing," Mathematics, MDPI, vol. 13(18), pages 1-27, September.
    8. Yangteng Ou & Shixiang Cao & Yang Zhang & Hongjia Zhu & Chengzhi Guo & Wei Yan & Fengxue Xin & Weiliang Dong & Yanli Zhang & Masashi Narita & Ziyi Yu & Tuomas P. J. Knowles, 2023. "Bioprinting microporous functional living materials from protein-based core-shell microgels," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Farshad Farshidfar & Kahn Rhrissorrakrai & Chaya Levovitz & Cong Peng & James Knight & Antonella Bacchiocchi & Juan Su & Mingzhu Yin & Mario Sznol & Stephan Ariyan & James Clune & Kelly Olino & Laxmi , 2022. "Integrative molecular and clinical profiling of acral melanoma links focal amplification of 22q11.21 to metastasis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Mariana A. G. Oliva & Giuseppe Ciccone & Gotthold Fläschner & Jiajun Luo & Jonah L. Voigt & Patrizia Romani & Paul Genever & Oana Dobre & Sirio Dupont & Massimo Vassalli & Pere Roca-Cusachs & Manuel S, 2025. "Piezo1 regulates the mechanotransduction of soft matrix viscoelasticity," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    11. Michaela Huber & Anne Lippegaus & Sahar Melamed & Malte Siemers & Benjamin R. Wucher & Mona Hoyos & Carey Nadell & Gisela Storz & Kai Papenfort, 2022. "An RNA sponge controls quorum sensing dynamics and biofilm formation in Vibrio cholerae," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Zhongmin Geng & Zhenping Cao & Rui Liu & Ke Liu & Jinyao Liu & Weihong Tan, 2021. "Aptamer-assisted tumor localization of bacteria for enhanced biotherapy," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    13. Maayan Karlinski Zur & Bidisha Bhattacharya & Inna Solomonov & Sivan Dror & Alon Savidor & Yishai Levin & Amir Prior & Tamar Sapir & Talia Harris & Tsviya Olender & Rita Schmidt & J. M. Schwarz & Irit, 2025. "Altered extracellular matrix structure and elevated stiffness in a brain organoid model for disease," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    14. Huilong Luo & Yanmei Chen & Xiao Kuang & Xinyue Wang & Fengmin Yang & Zhenping Cao & Lu Wang & Sisi Lin & Feng Wu & Jinyao Liu, 2022. "Chemical reaction-mediated covalent localization of bacteria," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Zhao Wang & Jan Lauko & Amanda W. Kijas & Elliot P. Gilbert & Petri Turunen & Ramanathan Yegappan & Dongxiu Zou & Jitendra Mata & Alan E. Rowan, 2023. "Snake venom-defined fibrin architecture dictates fibroblast survival and differentiation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Jun Zhou & Maoyi Li & Qiufang Chen & Xinjie Li & Linfu Chen & Ziliang Dong & Wenjun Zhu & Yang Yang & Zhuang Liu & Qian Chen, 2022. "Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Qin-Yang Zeng & Gui-Xin Su & Ai-Sheng Song & Xin-Yu Mei & Zhi-Yue Xu & Yue Ying & Zhuo-Zhi Zhang & Xiang-Xiang Song & Guang-Wei Deng & Joel Moser & Tian-Bao Ma & Ping-Heng Tan & Xin Zhang, 2025. "High-quality-factor viscoelastic nanomechanical resonators from moiré superlattices," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    18. Shengbo Wu & Jie Feng & Chunjiang Liu & Hao Wu & Zekai Qiu & Jianjun Ge & Shuyang Sun & Xia Hong & Yukun Li & Xiaona Wang & Aidong Yang & Fei Guo & Jianjun Qiao, 2022. "Machine learning aided construction of the quorum sensing communication network for human gut microbiota," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Woojin Choi & Utkarsh Mangal & Jae-Hun Yu & Jeong-Hyun Ryu & Ji‑Yeong Kim & Taesuk Jun & Yoojin Lee & Heesu Cho & Moonhyun Choi & Milae Lee & Du Yeol Ryu & Sang-Young Lee & Se Yong Jung & Jae-Kook Cha, 2024. "Viscoelastic and antimicrobial dental care bioplastic with recyclable life cycle," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Jiezhou Pan & Guidong Gong & Qin Wang & Jiaojiao Shang & Yunxiang He & Chelsea Catania & Dan Birnbaum & Yifei Li & Zhijun Jia & Yaoyao Zhang & Neel S. Joshi & Junling Guo, 2022. "A single-cell nanocoating of probiotics for enhanced amelioration of antibiotic-associated diarrhea," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62349-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.