IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62331-7.html
   My bibliography  Save this article

Observation of the anomalous Nernst effect in altermagnetic candidate Mn5Si3

Author

Listed:
  • Antonín Badura

    (Czech Academy of Sciences
    Charles University)

  • Warlley H. Campos

    (Max Planck Institute for the Physics of Complex Systems
    Johannes Gutenberg University Mainz)

  • Venkata K. Bharadwaj

    (Johannes Gutenberg University Mainz)

  • Ismaïla Kounta

    (Aix Marseille University, CNRS, CINAM, AMUTECH)

  • Lisa Michez

    (Aix Marseille University, CNRS, CINAM, AMUTECH)

  • Matthieu Petit

    (Aix Marseille University, CNRS, CINAM, AMUTECH)

  • Javier Rial

    (IRIG-SPINTEC)

  • Miina Leiviskä

    (Czech Academy of Sciences)

  • Vincent Baltz

    (IRIG-SPINTEC)

  • Filip Krizek

    (Czech Academy of Sciences)

  • Dominik Kriegner

    (Czech Academy of Sciences)

  • Jakub Železný

    (Czech Academy of Sciences)

  • Jan Zemen

    (Czech Technical University in Prague)

  • Sjoerd Telkamp

    (Solid State Physics Laboratory, ETH)

  • Sebastian Sailler

    (University of Konstanz)

  • Michaela Lammel

    (University of Konstanz)

  • Rodrigo Jaeschke-Ubiergo

    (Johannes Gutenberg University Mainz)

  • Anna Birk Hellenes

    (Johannes Gutenberg University Mainz)

  • Rafael González-Hernández

    (Johannes Gutenberg University Mainz
    Universidad del Norte)

  • Jairo Sinova

    (Johannes Gutenberg University Mainz
    Texas A&M University)

  • Tomáš Jungwirth

    (Czech Academy of Sciences
    University of Nottingham)

  • Sebastian T. B. Goennenwein

    (University of Konstanz)

  • Libor Šmejkal

    (Czech Academy of Sciences
    Max Planck Institute for the Physics of Complex Systems
    Johannes Gutenberg University Mainz
    Max Planck Institute for Chemical Physics of Solids)

  • Helena Reichlova

    (Czech Academy of Sciences)

Abstract

The anomalous Nernst effect generates a voltage transverse to an applied thermal gradient in some magnetically ordered systems. While the effect was considered excluded in compensated magnetic materials with collinear ordering, in the recently identified symmetry-class of altermagnets, the anomalous Nernst effect is possible despite the compensated collinear spin arrangement. In this work, we show that epitaxial Mn5Si3 thin films grown on Si manifest an anomalous Nernst effect with a finite spontaneous signal at zero magnetic field despite the vanishing spontaneous magnetization. We attribute this to the previously theoretically predicted and experimentally corroborated altermagnetism of epitaxial Mn5Si3 thin films grown on Si. The observed spontaneous anomalous Nernst coefficient reaches the value of 0.26 μV/K with the corresponding spontaneous Nernst conductivity of 0.22 A/(K ⋅ m). To complement our measurements, we perform density-functional theory calculations of the momentum-resolved anomalous Nernst conductivity, highlighting the contributions of altermagnetic pseudonodal surfaces and ladder transitions to the Berry curvature. Our results illustrate the value of unconventional d-wave wave altermagnets composed of abundant and non-toxic light elements for thermo-electrics and spin-caloritronics.

Suggested Citation

  • Antonín Badura & Warlley H. Campos & Venkata K. Bharadwaj & Ismaïla Kounta & Lisa Michez & Matthieu Petit & Javier Rial & Miina Leiviskä & Vincent Baltz & Filip Krizek & Dominik Kriegner & Jakub Želez, 2025. "Observation of the anomalous Nernst effect in altermagnetic candidate Mn5Si3," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62331-7
    DOI: 10.1038/s41467-025-62331-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62331-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62331-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Satoru Nakatsuji & Naoki Kiyohara & Tomoya Higo, 2015. "Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature," Nature, Nature, vol. 527(7577), pages 212-215, November.
    2. Helena Reichlova & Rafael Lopes Seeger & Rafael González-Hernández & Ismaila Kounta & Richard Schlitz & Dominik Kriegner & Philipp Ritzinger & Michaela Lammel & Miina Leiviskä & Anna Birk Hellenes & K, 2024. "Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Akito Sakai & Susumu Minami & Takashi Koretsune & Taishi Chen & Tomoya Higo & Yangming Wang & Takuya Nomoto & Motoaki Hirayama & Shinji Miwa & Daisuke Nishio-Hamane & Fumiyuki Ishii & Ryotaro Arita & , 2020. "Iron-based binary ferromagnets for transverse thermoelectric conversion," Nature, Nature, vol. 581(7806), pages 53-57, May.
    4. Helena Reichlova & Tomas Janda & Joao Godinho & Anastasios Markou & Dominik Kriegner & Richard Schlitz & Jakub Zelezny & Zbynek Soban & Mauricio Bejarano & Helmut Schultheiss & Petr Nemec & Tomas Jung, 2019. "Imaging and writing magnetic domains in the non-collinear antiferromagnet Mn3Sn," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    5. Christoph Sürgers & Gerda Fischer & Patrick Winkel & Hilbert v. Löhneysen, 2014. "Large topological Hall effect in the non-collinear phase of an antiferromagnet," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayukh Kumar Ray & Mingxuan Fu & Youzhe Chen & Taishi Chen & Takuya Nomoto & Shiro Sakai & Motoharu Kitatani & Motoaki Hirayama & Shusaku Imajo & Takahiro Tomita & Akito Sakai & Daisuke Nishio-Hamane , 2025. "Zero-field Hall effect emerging from a non-Fermi liquid in a collinear antiferromagnet V1/3NbS2," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    2. Xitong Xu & Jia-Xin Yin & Wenlong Ma & Hung-Ju Tien & Xiao-Bin Qiang & P. V. Sreenivasa Reddy & Huibin Zhou & Jie Shen & Hai-Zhou Lu & Tay-Rong Chang & Zhe Qu & Shuang Jia, 2022. "Topological charge-entropy scaling in kagome Chern magnet TbMn6Sn6," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Heda Zhang & Jahyun Koo & Chunqiang Xu & Milos Sretenovic & Binghai Yan & Xianglin Ke, 2022. "Exchange-biased topological transverse thermoelectric effects in a Kagome ferrimagnet," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Pingfan Gu & Yuxuan Peng & Shiqi Yang & Huan Wang & Shenyong Ye & Hanwen Wang & Yanping Li & Tianlong Xia & Jinbo Yang & Yu Ye, 2025. "Probing the anomalous Hall transport and magnetic reversal of quasi-two-dimensional antiferromagnet Co1/3NbS2," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    5. Helena Reichlova & Rafael Lopes Seeger & Rafael González-Hernández & Ismaila Kounta & Richard Schlitz & Dominik Kriegner & Philipp Ritzinger & Michaela Lammel & Miina Leiviskä & Anna Birk Hellenes & K, 2024. "Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Rafael González-Hernández & Philipp Ritzinger & Karel Výborný & Jakub Železný & Aurélien Manchon, 2024. "Non-relativistic torque and Edelstein effect in non-collinear magnets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Ravi Gautam & Takamasa Hirai & Abdulkareem Alasli & Hosei Nagano & Tadakatsu Ohkubo & Ken-ichi Uchida & Hossein Sepehri-Amin, 2024. "Creation of flexible spin-caloritronic material with giant transverse thermoelectric conversion by nanostructure engineering," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Han Yan & Hongye Mao & Peixin Qin & Jinhua Wang & Haidong Liang & Xiaorong Zhou & Xiaoning Wang & Hongyu Chen & Ziang Meng & Li Liu & Guojian Zhao & Zhiyuan Duan & Zengwei Zhu & Bin Fang & Zhongming Z, 2024. "An antiferromagnetic spin phase change memory," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Luo, Yang & Li, Linlin & Chen, Yiping & Kim, Chang Nyung, 2022. "Influence of geometric parameter and contact resistances on the thermal-electric behavior of a segmented TEG," Energy, Elsevier, vol. 254(PC).
    10. Hikari Manako & Shoya Ohsumi & Yoshiki J. Sato & R. Okazaki & D. Aoki, 2024. "Large transverse thermoelectric effect induced by the mixed-dimensionality of Fermi surfaces," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Binoy K. Hazra & Banabir Pal & Jae-Chun Jeon & Robin R. Neumann & Börge Göbel & Bharat Grover & Hakan Deniz & Andriy Styervoyedov & Holger Meyerheim & Ingrid Mertig & See-Hun Yang & Stuart S. P. Parki, 2023. "Generation of out-of-plane polarized spin current by spin swapping," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    12. Zhenyi Zheng & Tao Zeng & Tieyang Zhao & Shu Shi & Lizhu Ren & Tongtong Zhang & Lanxin Jia & Youdi Gu & Rui Xiao & Hengan Zhou & Qihan Zhang & Jiaqi Lu & Guilei Wang & Chao Zhao & Huihui Li & Beng Kan, 2024. "Effective electrical manipulation of a topological antiferromagnet by orbital torques," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Mason L. Klemm & Saif Siddique & Yuan-Chun Chang & Sijie Xu & Yaofeng Xie & Tanner Legvold & Mehrdad T. Kiani & Xiaokun Teng & Bin Gao & Feng Ye & Huibo Cao & Yiqing Hao & Wei Tian & Hubertus Luetkens, 2025. "Vacancy-induced suppression of charge density wave order and its impact on magnetic order in kagome antiferromagnet FeGe," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    14. Yue Yu & Han Gyeol Suh & Mercè Roig & Daniel F. Agterberg, 2025. "Altermagnetism from coincident Van Hove singularities: application to κ-Cl," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    15. Bang, Ki Mun & Park, Sang J. & Yu, Hyun & Jin, Hyungyu, 2024. "Large transverse thermopower in shape-engineered tilted leg thermopile," Applied Energy, Elsevier, vol. 368(C).
    16. Dongliang Gong & Junyi Yang & Shu Zhang & Shashi Pandey & Dapeng Cui & Jacob P. C. Ruff & Lukas Horak & Evguenia Karapetrova & Jong-Woo Kim & Philip J. Ryan & Lin Hao & Yang Zhang & Jian Liu, 2025. "Large asymmetric anomalous Nernst effect in the antiferromagnet SrIr0.8Sn0.2O3," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    17. Qingkai Meng & Jianting Dong & Pan Nie & Liangcai Xu & Jinhua Wang & Shan Jiang & Huakun Zuo & Jia Zhang & Xiaokang Li & Zengwei Zhu & Leon Balents & Kamran Behnia, 2024. "Magnetostriction, piezomagnetism and domain nucleation in a Kagome antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Y. Hayashi & Y. Okamura & N. Kanazawa & T. Yu & T. Koretsune & R. Arita & A. Tsukazaki & M. Ichikawa & M. Kawasaki & Y. Tokura & Y. Takahashi, 2021. "Magneto-optical spectroscopy on Weyl nodes for anomalous and topological Hall effects in chiral MnGe," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    19. Gaojie Zhang & Fei Guo & Hao Wu & Xiaokun Wen & Li Yang & Wen Jin & Wenfeng Zhang & Haixin Chang, 2022. "Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Mingxing Wu & Taishi Chen & Takuya Nomoto & Yaroslav Tserkovnyak & Hironari Isshiki & Yoshinobu Nakatani & Tomoya Higo & Takahiro Tomita & Kouta Kondou & Ryotaro Arita & Satoru Nakatsuji & Yoshichika , 2024. "Current-driven fast magnetic octupole domain-wall motion in noncollinear antiferromagnets," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62331-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.