IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62232-9.html
   My bibliography  Save this article

Maximized circularly polarized luminescence from metal clusters accelerates chiral photopolymerization

Author

Listed:
  • Chong Zhang

    (Zhengzhou University
    Henan University of Technology)

  • Shan Guan

    (Zhengzhou University)

  • Zhi-Min Zhang

    (Zhengzhou University)

  • Bai-Yu Wu

    (Zhengzhou University)

  • Zhen Han

    (Zhengzhou University)

  • Shuang-Quan Zang

    (Zhengzhou University)

Abstract

The practical application of the circularly polarized luminescence (CPL) emitted from chiral substances faces significant hurdles, primarily due to the small luminescence dissymmetry factor (glum) and low photoluminescence quantum yield (PLQY). Herein, we demonstrate a hierarchical system in which metal clusters exhibit excellent CPL performance, with both excellent glum factors and high PLQYs, thereby triggering enantioselective photopolymerization. Their CPL activities are sequentially amplified in different assembly forms induced by liquid crystals (LCs), and the maximum glum factor is increased by 1240 times, reaching a value of 1.24. The PLQYs of the metal clusters in different assembled states are sharply enhanced compared to that in the discrete state. Benefiting from the CPL performance of the metal clusters, their CPL was used to remotely regulate enantioselective polymerization, thus realizing light-to-matter chirality transfer. Impressively, upon incorporation of achiral luminophores, the polymer system is endowed with CPL through sequential chirality transfer. These innovative achievements open new avenues for the design and cutting-edge application of CPL-active metal clusters.

Suggested Citation

  • Chong Zhang & Shan Guan & Zhi-Min Zhang & Bai-Yu Wu & Zhen Han & Shuang-Quan Zang, 2025. "Maximized circularly polarized luminescence from metal clusters accelerates chiral photopolymerization," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62232-9
    DOI: 10.1038/s41467-025-62232-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62232-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62232-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yangyang Xu & Guang Yang & Hongyan Xia & Gang Zou & Qijin Zhang & Jiangang Gao, 2014. "Enantioselective synthesis of helical polydiacetylene by application of linearly polarized light and magnetic field," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
    2. Dongxue Han & Xuefeng Yang & Jianlei Han & Jin Zhou & Tifeng Jiao & Pengfei Duan, 2020. "Sequentially amplified circularly polarized ultraviolet luminescence for enantioselective photopolymerization," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Chenlu He & Guang Yang & Yan Kuai & Sizhen Shan & Lin Yang & Jingang Hu & Douguo Zhang & Qijin Zhang & Gang Zou, 2018. "Dissymmetry enhancement in enantioselective synthesis of helical polydiacetylene by application of superchiral light," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. Xiao-Qian Liang & Ying-Zhou Li & Zhi Wang & Shan-Shan Zhang & Yi-Cheng Liu & Zhao-Zhen Cao & Lei Feng & Zhi-Yong Gao & Qing-Wang Xue & Chen-Ho Tung & Di Sun, 2021. "Revealing the chirality origin and homochirality crystallization of Ag14 nanocluster at the molecular level," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Yingwei Li & Meng Zhou & Yongbo Song & Tatsuya Higaki & He Wang & Rongchao Jin, 2021. "Double-helical assembly of heterodimeric nanoclusters into supercrystals," Nature, Nature, vol. 594(7863), pages 380-384, June.
    6. Yajie Zhou & Yaxin Wang & Yonghui Song & Shanshan Zhao & Mingjiang Zhang & Guangen Li & Qi Guo & Zhi Tong & Zeyi Li & Shan Jin & Hong-Bin Yao & Manzhou Zhu & Taotao Zhuang, 2024. "Helical-caging enables single-emitted large asymmetric full-color circularly polarized luminescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Xiao-Hong Ma & Jing Li & Peng Luo & Jia-Hua Hu & Zhen Han & Xi-Yan Dong & Guohua Xie & Shuang-Quan Zang, 2023. "Carbene-stabilized enantiopure heterometallic clusters featuring EQE of 20.8% in circularly-polarized OLED," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. S. H. Chen & D. Katsis & A. W. Schmid & J. C. Mastrangelo & T. Tsutsui & T. N. Blanton, 1999. "Circularly polarized light generated by photoexcitation of luminophores in glassy liquid-crystal films," Nature, Nature, vol. 397(6719), pages 506-508, February.
    9. Chenlu He & Zeyu Feng & Sizhen Shan & Mengqiao Wang & Xin Chen & Gang Zou, 2020. "Highly enantioselective photo-polymerization enhanced by chiral nanoparticles and in situ photopatterning of chirality," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan Wang & Dian Niu & Guanghui Ouyang & Minghua Liu, 2022. "Double helical π-aggregate nanoarchitectonics for amplified circularly polarized luminescence," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Zhen Han & Chunbo Duan & Xi-Yan Dong & Yubing Si & Jia-Hua Hu & Yan Wang & Si-Meng Zhai & Tian Lu & Hui Xu & Shuang-Quan Zang, 2025. "Tightly bonded excitons in chiral metal clusters for luminescent brilliance," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    3. Xue-Jing Zhai & Meng-Yu Luo & Xi-Ming Luo & Xi-Yan Dong & Yubing Si & Chong Zhang & Zhen Han & Runping Han & Shuang-Quan Zang & Thomas C. W. Mak, 2024. "Hierarchical assembly of Ag40 nanowheel ranging from building blocks to diverse superstructure regulation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Jiapeng Zheng & Yuang Fu & Jing Wang & Wei Zhang & Xinhui Lu & Hai-Qing Lin & Lei Shao & Jianfang Wang, 2025. "Circularly polarized OLEDs from chiral plasmonic nanoparticle-molecule hybrids," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    5. Zhihe Liu & Hua Tan & Bo Li & Zehua Hu & De-en Jiang & Qiaofeng Yao & Lei Wang & Jianping Xie, 2023. "Ligand effect on switching the rate-determining step of water oxidation in atomically precise metal nanoclusters," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Liang Qiao & Nia Pollard & Ravithree D. Senanayake & Zhi Yang & Minjung Kim & Arzeena S. Ali & Minh Tam Hoang & Nan Yao & Yimo Han & Rigoberto Hernandez & Andre Z. Clayborne & Matthew R. Jones, 2023. "Atomically precise nanoclusters predominantly seed gold nanoparticle syntheses," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Jun Guo & Yulong Duan & Yunling Jia & Zelong Zhao & Xiaoqing Gao & Pai Liu & Fangfang Li & Hongli Chen & Yutong Ye & Yujiao Liu & Meiting Zhao & Zhiyong Tang & Yi Liu, 2024. "Biomimetic chiral hydrogen-bonded organic-inorganic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Yongbo Song & Yingwei Li & Meng Zhou & Hao Li & Tingting Xu & Chuanjun Zhou & Feng Ke & Dayujia Huo & Yan Wan & Jialong Jie & Wen Wu Xu & Manzhou Zhu & Rongchao Jin, 2022. "Atomic structure of a seed-sized gold nanoprism," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Li-Juan Liu & Fahri Alkan & Shengli Zhuang & Dongyi Liu & Tehseen Nawaz & Jun Guo & Xiaozhou Luo & Jian He, 2023. "Atomically precise gold nanoclusters at the molecular-to-metallic transition with intrinsic chirality from surface layers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Jose Mendoza-Carreño & Simone Bertucci & Mauro Garbarino & Matilde Cirignano & Sergio Fiorito & Paola Lova & Miquel Garriga & Maria Isabel Alonso & Francesco Di Stasio & Agustín Mihi, 2024. "A single nanophotonic platform for producing circularly polarized white light from non-chiral emitters," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Hao Li & Tian Wang & Jiaojiao Han & Ying Xu & Xi Kang & Xiaosong Li & Manzhou Zhu, 2024. "Fluorescence resonance energy transfer in atomically precise metal nanoclusters by cocrystallization-induced spatial confinement," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Qing Zhang & Weiqiang Wang & Shuang Zhou & Rui Zhang & Irmgard Bischofberger, 2024. "Flow-induced periodic chiral structures in an achiral nematic liquid crystal," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Yong Liu & Lihao Wang & Qianhui Ma & Xingtao Xu & Xin Gao & Haiguang Zhu & Ting Feng & Xinyue Dou & Miharu Eguchi & Yusuke Yamauchi & Xun Yuan, 2024. "Simultaneous generation of residue-free reactive oxygen species and bacteria capture for efficient electrochemical water disinfection," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Ya-Jie Wang & Ke-Xin Zheng & Yi-He Yu & Zhengkun Xie & Pengyao Xing & Shuang-Quan Zang, 2025. "Self-assembled metal clustersomes and chirality transfer to colloidal photonic crystals," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    15. Zhan-Hua Zhao & Bao-Liang Han & Hai-Feng Su & Qi-Lin Guo & Wen-Xin Wang & Jing-Qiu Zhuo & Yong-Nan Guo & Jia-Long Liu & Geng-Geng Luo & Ping Cui & Di Sun, 2024. "Buckling cluster-based H-bonded icosahedral capsules and their propagation to a robust zeolite-like supramolecular framework," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Tonghan Zhao & Dejing Meng & Zhijian Hu & Wenjing Sun & Yinglu Ji & Jianlei Han & Xue Jin & Xiaochun Wu & Pengfei Duan, 2023. "Enhanced chiroptic properties of nanocomposites of achiral plasmonic nanoparticles decorated with chiral dye-loaded micelles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Xi-Ming Luo & Chun-Hua Gong & Fangfang Pan & Yubing Si & Jia-Wang Yuan & Muhammad Asad & Xi-Yan Dong & Shuang-Quan Zang & Thomas C. W. Mak, 2022. "Small symmetry-breaking triggering large chiroptical responses of Ag70 nanoclusters," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Yuan Zhong & Jiangwei Zhang & Tingting Li & Wenwu Xu & Qiaofeng Yao & Min Lu & Xue Bai & Zhennan Wu & Jianping Xie & Yu Zhang, 2023. "Suppression of kernel vibrations by layer-by-layer ligand engineering boosts photoluminescence efficiency of gold nanoclusters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Cao Fang & Chang Xu & Wei Zhang & Meng Zhou & Dong Tan & Lixia Qian & Daqiao Hu & Shan Jin & Manzhou Zhu, 2024. "Dual-quartet phosphorescent emission in the open-shell M1Ag13 (M = Pt, Pd) nanoclusters," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Tiejun Li & Dian Niu & Lukang Ji & Qian Li & Bo Guan & Hanxiao Wang & Guanghui Ouyang & Minghua Liu, 2025. "Supramolecular rosette intermediated homochiral double helix," Nature Communications, Nature, vol. 16(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62232-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.