Author
Listed:
- Mingrui He
(Harbin Institute of Technology)
- Yulun He
(Harbin Institute of Technology)
- Dongwei Lu
(Harbin Institute of Technology)
- Mengfei Wang
(Harbin Institute of Technology)
- Junjie Yang
(Harbin Institute of Technology)
- Tong Wu
(Harbin Institute of Technology)
- Jun Ma
(Harbin Institute of Technology)
Abstract
This study develops water treatment membranes using an innovative surface modifier comprising threaded supramolecular assemblies formed by hydrophilic cyclodextrin (CD) and low-surface-energy polydimethylsiloxane (PDMS). These supramolecular constructs establish dynamic hydrophilic and low-surface-energy heterogeneous microdomains that enhance synergistic resistance-release antifouling mechanisms. The modified membranes demonstrate better antifouling performance compared to conventional systems, particularly addressing the critical limitation of traditional membranes under low tangential flow conditions. The Brownian motion of the CDs sustains microdomain activity to prevent foulant accumulation in static environments, while tangential flow amplifies dynamic interactions to accelerate foulant detachment. The threading configuration of CDs along PDMS chains prevents water channel blockage caused by PDMS aggregation and facilitates water transport through the dynamic mobility of CDs. When separating bovine serum albumin solutions under an initial flux of 550 L·m−2·h−1 with 60 rpm stirring, the membrane exhibits merely 14.2% flux decline, highlighting its exceptional antifouling performance and permeability.
Suggested Citation
Mingrui He & Yulun He & Dongwei Lu & Mengfei Wang & Junjie Yang & Tong Wu & Jun Ma, 2025.
"Supramolecular dynamics-enhanced synergistic antifouling mechanisms for enhanced membrane antifouling and permeability,"
Nature Communications, Nature, vol. 16(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62231-w
DOI: 10.1038/s41467-025-62231-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62231-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.