IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62213-y.html
   My bibliography  Save this article

Transposons and accessory genes drive adaptation in a clonally evolving fungal pathogen

Author

Listed:
  • Cristina López Díaz

    (Universidad de Córdoba)

  • Dilay Hazal Ayhan

    (University of Massachusetts Amherst
    University of Massachusetts Amherst
    Acibadem University)

  • Ana Rodríguez López

    (Universidad de Córdoba)

  • Lucía Gómez Gil

    (Universidad de Córdoba
    Max-Planck-Institute for Biology)

  • Li-Jun Ma

    (University of Massachusetts Amherst
    University of Massachusetts Amherst)

  • Antonio Di Pietro

    (Universidad de Córdoba)

Abstract

Genomes of clonally reproducing fungal pathogens are often compartmentalized into conserved core and lineage-specific accessory regions (ARs), enriched in transposable elements (TEs). ARs and TEs are thought to promote pathogen adaptation, but direct experimental evidence is sparse. Using an evolve and re-sequence approach, we found that serial passaging of the cross-kingdom fungal pathogen Fusarium oxysporum through tomato plants or axenic media rapidly increased fitness under the selection condition. TE insertions were the predominant type of mutations in the evolved lines, with a single non-autonomous hAT-type TE accounting for 63% of total events detected. TEs are inserted preferentially at sites of histone H3 lysine 27 trimethylation, a hallmark of ARs. Recurrent evolutionary trajectories during plate adaptation led to increased proliferation concomitant with reduced virulence. Unexpectedly, adaptive mutations in accessory genes strongly impacted core functions such as growth, development, quorum sensing, or virulence. Thus, TEs and ARs drive rapid adaptation in this important fungal pathogen.

Suggested Citation

  • Cristina López Díaz & Dilay Hazal Ayhan & Ana Rodríguez López & Lucía Gómez Gil & Li-Jun Ma & Antonio Di Pietro, 2025. "Transposons and accessory genes drive adaptation in a clonally evolving fungal pathogen," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62213-y
    DOI: 10.1038/s41467-025-62213-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62213-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62213-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eva Stukenbrock & Sarah Gurr, 2023. "Address the growing urgency of fungal disease in crops," Nature, Nature, vol. 617(7959), pages 31-34, May.
    2. Li-Jun Ma & H. Charlotte van der Does & Katherine A. Borkovich & Jeffrey J. Coleman & Marie-Josée Daboussi & Antonio Di Pietro & Marie Dufresne & Michael Freitag & Manfred Grabherr & Bernard Henrissat, 2010. "Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium," Nature, Nature, vol. 464(7287), pages 367-373, March.
    3. Benjamin H. Good & Michael J. McDonald & Jeffrey E. Barrick & Richard E. Lenski & Michael M. Desai, 2017. "The dynamics of molecular evolution over 60,000 generations," Nature, Nature, vol. 551(7678), pages 45-50, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kei Hiruma & Seishiro Aoki & Junya Takino & Takeshi Higa & Yuniar Devi Utami & Akito Shiina & Masanori Okamoto & Masami Nakamura & Nanami Kawamura & Yoshihiro Ohmori & Ryohei Sugita & Keitaro Tanoi & , 2023. "A fungal sesquiterpene biosynthesis gene cluster critical for mutualist-pathogen transition in Colletotrichum tofieldiae," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Michael Habig & Cecile Lorrain & Alice Feurtey & Jovan Komluski & Eva H. Stukenbrock, 2021. "Epigenetic modifications affect the rate of spontaneous mutations in a pathogenic fungus," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Piaopiao Chen & Jianzhi Zhang, 2024. "The loci of environmental adaptation in a model eukaryote," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Serhii Aif & Nico Appold & Lucas Kampman & Oskar Hallatschek & Jona Kayser, 2022. "Evolutionary rescue of resistant mutants is governed by a balance between radial expansion and selection in compact populations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Ryo Mizuuchi & Taro Furubayashi & Norikazu Ichihashi, 2022. "Evolutionary transition from a single RNA replicator to a multiple replicator network," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Benjamin H. Good & Layton B. Rosenfeld, 2023. "Eco-evolutionary feedbacks in the human gut microbiome," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Yu Wang & Sen Wang & Yuanyuan Chen & Chunlan Xie & Haibo Xu & Yunhua Lin & Ranxun Lin & Wanlin Zeng & Xuan Chen & Xinyi Nie & Shihua Wang, 2025. "The role of Npt1 in regulating antifungal protein activity in filamentous fungi," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    8. Hanqiao Liu & Wenshu Zhang & Qinqfei He & Reyila Aikemu & Huijuan Xu & Zhan Guo & Lu Wang & Weixi Li & Guilin Wang & Xinyu Wang & Wangzhen Guo, 2024. "Re-localization of a repeat-containing fungal effector by apoplastic protein Chitinase-like 1 blocks its toxicity," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Joao A. Ascensao & Kelly M. Wetmore & Benjamin H. Good & Adam P. Arkin & Oskar Hallatschek, 2023. "Quantifying the local adaptive landscape of a nascent bacterial community," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Akshit Goyal & Mikhail Tikhonov, 2025. "Energy-ordered resource stratification as an agnostic signature of life," Nature Communications, Nature, vol. 16(1), pages 1-5, December.
    11. Avik Mukherjee & Jade Ealy & Yanqing Huang & Nina Catherine Benites & Mark Polk & Markus Basan, 2023. "Coexisting ecotypes in long-term evolution emerged from interacting trade-offs," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. N. Frazão & A. Konrad & M. Amicone & E. Seixas & D. Güleresi & M. Lässig & I. Gordo, 2022. "Two modes of evolution shape bacterial strain diversity in the mammalian gut for thousands of generations," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Felix Homma & Jie Huang & Renier A. L. van der Hoorn, 2023. "AlphaFold-Multimer predicts cross-kingdom interactions at the plant-pathogen interface," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Xueying C. Li & Lautaro Gandara & Måns Ekelöf & Kerstin Richter & Theodore Alexandrov & Justin Crocker, 2024. "Rapid response of fly populations to gene dosage across development and generations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Wen Wei & Wei-Chin Ho & Megan G. Behringer & Samuel F. Miller & George Bcharah & Michael Lynch, 2022. "Rapid evolution of mutation rate and spectrum in response to environmental and population-genetic challenges," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62213-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.