IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62108-y.html
   My bibliography  Save this article

Biobank-scale genetic characterization of Alzheimer’s disease and related dementias across diverse ancestries

Author

Listed:
  • Marzieh Khani

    (National Institutes of Health)

  • Fulya Akçimen

    (National Institutes of Health)

  • Spencer M. Grant

    (National Institutes of Health)

  • Suleyman Can Akerman

    (Johns Hopkins University School of Medicine
    Johns Hopkins University School of Medicine)

  • Paul Suhwan Lee

    (National Institutes of Health)

  • Faraz Faghri

    (National Institutes of Health
    Data Tecnica LLC)

  • Hampton Leonard

    (National Institutes of Health
    Data Tecnica LLC)

  • Jonggeol Jeffrey Kim

    (National Institutes of Health)

  • Mary B. Makarious

    (National Institutes of Health
    Data Tecnica LLC)

  • Mathew J. Koretsky

    (National Institutes of Health
    Data Tecnica LLC)

  • Jeffrey D. Rothstein

    (Johns Hopkins University School of Medicine
    Johns Hopkins University School of Medicine)

  • Cornelis Blauwendraat

    (National Institutes of Health
    National Institutes of Health)

  • Mike A. Nalls

    (National Institutes of Health
    Data Tecnica LLC)

  • Andrew Singleton

    (National Institutes of Health)

  • Sara Bandres-Ciga

    (National Institutes of Health)

Abstract

Alzheimer’s disease and related dementias (AD/ADRDs) pose a significant global public health challenge. To effectively implement personalized therapeutic interventions on a global scale, it is essential to identify disease-causing, risk, and resilience factors across diverse ancestral backgrounds. This study leveraged biobank-scale data to conduct a large multi-ancestry whole-genome sequencing characterization of AD/ADRDs. We thoroughly explored the role of protein-coding and splicing variants from key genes associated with AD/ADRDs across 11 ancestries, utilizing data from five distinct biobanks, including a total of 25,001 cases and 93,542 controls. We compiled the most extensive catalog of known and novel genetic variation in AD/ADRDs in a global context, providing clinical insights into their genetic-phenotypic correlations. A thorough assessment of APOE revealed ancestry-driven modulation of APOE-associated AD/ADRDs, as well as disease-modifying effects conferred by several variants among APOE ε4 carriers. Finally, we present an accessible and user-friendly platform to support future ADRD research ( https://niacard.shinyapps.io/MAMBARD_browser/ ).

Suggested Citation

  • Marzieh Khani & Fulya Akçimen & Spencer M. Grant & Suleyman Can Akerman & Paul Suhwan Lee & Faraz Faghri & Hampton Leonard & Jonggeol Jeffrey Kim & Mary B. Makarious & Mathew J. Koretsky & Jeffrey D. , 2025. "Biobank-scale genetic characterization of Alzheimer’s disease and related dementias across diverse ancestries," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62108-y
    DOI: 10.1038/s41467-025-62108-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62108-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62108-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Clare Bycroft & Colin Freeman & Desislava Petkova & Gavin Band & Lloyd T. Elliott & Kevin Sharp & Allan Motyer & Damjan Vukcevic & Olivier Delaneau & Jared O’Connell & Adrian Cortes & Samantha Welsh &, 2018. "The UK Biobank resource with deep phenotyping and genomic data," Nature, Nature, vol. 562(7726), pages 203-209, October.
    2. Matt Baker & Ian R. Mackenzie & Stuart M. Pickering-Brown & Jennifer Gass & Rosa Rademakers & Caroline Lindholm & Julie Snowden & Jennifer Adamson & A. Dessa Sadovnick & Sara Rollinson & Ashley Cannon, 2006. "Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17," Nature, Nature, vol. 442(7105), pages 916-919, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Di Scipio & Mohammad Khan & Shihong Mao & Michael Chong & Conor Judge & Nazia Pathan & Nicolas Perrot & Walter Nelson & Ricky Lali & Shuang Di & Robert Morton & Jeremy Petch & Guillaume Paré, 2023. "A versatile, fast and unbiased method for estimation of gene-by-environment interaction effects on biobank-scale datasets," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Heng Du & Lei Zhou & Zhen Liu & Yue Zhuo & Meilin Zhang & Qianqian Huang & Shiyu Lu & Kai Xing & Li Jiang & Jian-Feng Liu, 2024. "The 1000 Chinese Indigenous Pig Genomes Project provides insights into the genomic architecture of pigs," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Vincent Michaud & Eulalie Lasseaux & David J. Green & Dave T. Gerrard & Claudio Plaisant & Tomas Fitzgerald & Ewan Birney & Benoît Arveiler & Graeme C. Black & Panagiotis I. Sergouniotis, 2022. "The contribution of common regulatory and protein-coding TYR variants to the genetic architecture of albinism," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Dick Schijven & Sourena Soheili-Nezhad & Simon E. Fisher & Clyde Francks, 2024. "Exome-wide analysis implicates rare protein-altering variants in human handedness," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Gökberk Alagöz & Else Eising & Yasmina Mekki & Giacomo Bignardi & Pierre Fontanillas & Michel G. Nivard & Michelle Luciano & Nancy J. Cox & Simon E. Fisher & Reyna L. Gordon, 2025. "The shared genetic architecture and evolution of human language and musical rhythm," Nature Human Behaviour, Nature, vol. 9(2), pages 376-390, February.
    7. Shahram Bahrami & Kaja Nordengen & Jaroslav Rokicki & Alexey A. Shadrin & Zillur Rahman & Olav B. Smeland & Piotr P. Jaholkowski & Nadine Parker & Pravesh Parekh & Kevin S. O’Connell & Torbjørn Elvsås, 2024. "The genetic landscape of basal ganglia and implications for common brain disorders," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. repec:plo:pgen00:1009315 is not listed on IDEAS
    9. Sylvia Hartmann & Summaira Yasmeen & Benjamin M. Jacobs & Spiros Denaxas & Munir Pirmohamed & Eric R. Gamazon & Mark J. Caulfield & Harry Hemingway & Maik Pietzner & Claudia Langenberg, 2023. "ADRA2A and IRX1 are putative risk genes for Raynaud’s phenomenon," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Nicholas J. Schork & Laura H. Goetz, 2025. "From precision interventions to precision health," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    11. Jujiao Kang & Yue-Ting Deng & Bang-Sheng Wu & Wei-Shi Liu & Ze-Yu Li & Shitong Xiang & Liu Yang & Jia You & Xiaohong Gong & Tianye Jia & Jin-Tai Yu & Wei Cheng & Jianfeng Feng, 2024. "Whole exome sequencing analysis identifies genes for alcohol consumption," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Mit Shah & Marco H. A. Inácio & Chang Lu & Pierre-Raphaël Schiratti & Sean L. Zheng & Adam Clement & Antonio Marvao & Wenjia Bai & Andrew P. King & James S. Ware & Martin R. Wilkins & Johanna Mielke &, 2023. "Environmental and genetic predictors of human cardiovascular ageing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Zhaotong Lin & Wei Pan, 2024. "A robust cis-Mendelian randomization method with application to drug target discovery," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Zhening Liu & Hangkai Huang & Jiarong Xie & Yingying Xu & Chengfu Xu, 2024. "Circulating fatty acids and risk of hepatocellular carcinoma and chronic liver disease mortality in the UK Biobank," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Junqing Xie & Shuo Feng & Xintong Li & Ester Gea-Mallorquí & Albert Prats-Uribe & Dani Prieto-Alhambra, 2022. "Comparative effectiveness of the BNT162b2 and ChAdOx1 vaccines against Covid-19 in people over 50," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Rongtao Jiang & Stephanie Noble & Matthew Rosenblatt & Wei Dai & Jean Ye & Shu Liu & Shile Qi & Vince D. Calhoun & Jing Sui & Dustin Scheinost, 2024. "The brain structure, inflammatory, and genetic mechanisms mediate the association between physical frailty and depression," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Amelia K. Haj & David S. Paul & Sean J. Jurgens & Harish Eswaran & Lu-Chen Weng & Justine Ryu & Alfonso Rodriguez Espada & Sharjeel Chaudhry & Louis M. Feingold & Kristen Burke & Satoshi Koyama & Xin , 2025. "Coagulation factor XII haploinsufficiency is protective against venous thromboembolism in a population-scale multidimensional analysis," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    18. Romain Fournier & Zoi Tsangalidou & David Reich & Pier Francesco Palamara, 2023. "Haplotype-based inference of recent effective population size in modern and ancient DNA samples," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Nicole Deflaux & Margaret Sunitha Selvaraj & Henry Robert Condon & Kelsey Mayo & Sara Haidermota & Melissa A. Basford & Chris Lunt & Anthony A. Philippakis & Dan M. Roden & Joshua C. Denny & Anjene Mu, 2023. "Demonstrating paths for unlocking the value of cloud genomics through cross cohort analysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. George B. Busby & Scott Kulm & Alessandro Bolli & Jen Kintzle & Paolo Di Domenico & Giordano Bottà, 2023. "Ancestry-specific polygenic risk scores are risk enhancers for clinical cardiovascular disease assessments," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    21. van den Berg, Gerard J. & von Hinke, Stephanie & Wang, R. Adele H., 2022. "Prenatal Sugar Consumption and Late-Life Human Capital and Health: Analyses Based on Postwar Rationing and Polygenic Scores," IZA Discussion Papers 15544, Institute of Labor Economics (IZA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62108-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.