IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62093-2.html
   My bibliography  Save this article

Late-stage O-sulfation with a bioinspired sulfuryl donor

Author

Listed:
  • Ye Zheng

    (Hunan University)

  • Li Huang

    (Hunan University)

  • Chunlan Song

    (Hunan University)

  • Jiakun Li

    (Hunan University)

Abstract

O-sulfation is a widespread modification of both endogenous and exogenous biomolecules, where the primary objective is to identify effective sulfuryl donors. In nature, 3′-phosphoadenosine-5′-phosphosulfate (PAPS) and p-nitrophenyl sulfate (PNPS) are efficient sulfuryl donors. However, most chemical sulfuryl donors in O-sulfation, typically require harsh conditions and have not been demonstrated in complex molecules. Here we report a biomimetic O-sulfation method that is compatible with complex natural products and pharmaceutical scaffolds. Key to this approach is the use of tetrabutylammonium (nBu4N+) as a counterion for intrinsically anionic PNPS donor. The role of nBu4N+ goes far beyond simple charge balance; the coordination of nBu4N+ with sulfate in PNPS activates the sulfuryl donor by elongating the S–O bond and enhancing the leaving ability of nitrophenolate group. This unique activation model facilitates the transfer of sulfuryl group to diverse alcohols and phenols under simple and mild reaction conditions, thereby demonstrating its utility for site-selective O-sulfation with multiple hydroxyl groups.

Suggested Citation

  • Ye Zheng & Li Huang & Chunlan Song & Jiakun Li, 2025. "Late-stage O-sulfation with a bioinspired sulfuryl donor," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62093-2
    DOI: 10.1038/s41467-025-62093-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62093-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62093-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62093-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.