IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62061-w.html
   My bibliography  Save this article

E2F activity determines mitosis versus whole-genome duplication in G2-arrested cells

Author

Listed:
  • Kibum Kim

    (Columbia University)

  • Jessica Armand

    (Columbia University
    Columbia University)

  • Sungsoo Kim

    (Columbia University
    Columbia University)

  • Hee Won Yang

    (Columbia University
    Columbia University)

Abstract

While mitogenic signaling is known to regulate cell-cycle entry during the G1 phase, its function in the G2 phase remains elusive. Here we show that mitogenic signaling controls whether G2-arrested cells proceed through mitosis or undergo whole-genome duplication. Although mitogenic signaling is not required for the G2/M transition under normal conditions, it modulates E2F transcriptional activity via c-Myc. When G2 arrest occurs due to CDK4/6 and CDK2 suppression, E2F activity levels determine the status of APC/C inactivation and the CDK2-Rb feedback loop. Upon release from G2 arrest, cells maintaining APC/C inactivation promptly induce CDK2 activation and FoxM1 phosphorylation, driving mitotic entry. Conversely, APC/C reactivation degrades cyclin A and abolishes the CDK2-Rb loop, necessitating CDK4/6 activation for cell-cycle re-entry. This regulatory mechanism mirrors the G1-phase process, resulting in whole-genome duplication. In cancer cells, this process promotes genome instability and oncogene amplification, contributing to aggressive behavior. These findings reveal a previously unrecognized mitogen-dependent checkpoint that governs cell fate in the G2 phase.

Suggested Citation

  • Kibum Kim & Jessica Armand & Sungsoo Kim & Hee Won Yang, 2025. "E2F activity determines mitosis versus whole-genome duplication in G2-arrested cells," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62061-w
    DOI: 10.1038/s41467-025-62061-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62061-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62061-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62061-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.