IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62061-w.html
   My bibliography  Save this article

E2F activity determines mitosis versus whole-genome duplication in G2-arrested cells

Author

Listed:
  • Kibum Kim

    (Columbia University)

  • Jessica Armand

    (Columbia University
    Columbia University)

  • Sungsoo Kim

    (Columbia University
    Columbia University)

  • Hee Won Yang

    (Columbia University
    Columbia University)

Abstract

While mitogenic signaling is known to regulate cell-cycle entry during the G1 phase, its function in the G2 phase remains elusive. Here we show that mitogenic signaling controls whether G2-arrested cells proceed through mitosis or undergo whole-genome duplication. Although mitogenic signaling is not required for the G2/M transition under normal conditions, it modulates E2F transcriptional activity via c-Myc. When G2 arrest occurs due to CDK4/6 and CDK2 suppression, E2F activity levels determine the status of APC/C inactivation and the CDK2-Rb feedback loop. Upon release from G2 arrest, cells maintaining APC/C inactivation promptly induce CDK2 activation and FoxM1 phosphorylation, driving mitotic entry. Conversely, APC/C reactivation degrades cyclin A and abolishes the CDK2-Rb loop, necessitating CDK4/6 activation for cell-cycle re-entry. This regulatory mechanism mirrors the G1-phase process, resulting in whole-genome duplication. In cancer cells, this process promotes genome instability and oncogene amplification, contributing to aggressive behavior. These findings reveal a previously unrecognized mitogen-dependent checkpoint that governs cell fate in the G2 phase.

Suggested Citation

  • Kibum Kim & Jessica Armand & Sungsoo Kim & Hee Won Yang, 2025. "E2F activity determines mitosis versus whole-genome duplication in G2-arrested cells," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62061-w
    DOI: 10.1038/s41467-025-62061-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62061-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62061-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bin-Bing S. Zhou & Stephen J. Elledge, 2000. "The DNA damage response: putting checkpoints in perspective," Nature, Nature, vol. 408(6811), pages 433-439, November.
    2. Steven D. Cappell & Kevin G. Mark & Damien Garbett & Lindsey R. Pack & Michael Rape & Tobias Meyer, 2018. "EMI1 switches from being a substrate to an inhibitor of APC/CCDH1 to start the cell cycle," Nature, Nature, vol. 558(7709), pages 313-317, June.
    3. Ryan J. Quinton & Amanda DiDomizio & Marc A. Vittoria & Kristýna Kotýnková & Carlos J. Ticas & Sheena Patel & Yusuke Koga & Jasmine Vakhshoorzadeh & Nicole Hermance & Taruho S. Kuroda & Neha Parulekar, 2021. "Whole-genome doubling confers unique genetic vulnerabilities on tumour cells," Nature, Nature, vol. 590(7846), pages 492-497, February.
    4. Hee Won Yang & Mingyu Chung & Takamasa Kudo & Tobias Meyer, 2017. "Competing memories of mitogen and p53 signalling control cell-cycle entry," Nature, Nature, vol. 549(7672), pages 404-408, September.
    5. Femke M. Feringa & Lenno Krenning & André Koch & Jeroen van den Berg & Bram van den Broek & Kees Jalink & René H. Medema, 2016. "Hypersensitivity to DNA damage in antephase as a safeguard for genome stability," Nature Communications, Nature, vol. 7(1), pages 1-10, November.
    6. James A. Cornwell & Adrijana Crncec & Marwa M. Afifi & Kristina Tang & Ruhul Amin & Steven D. Cappell, 2023. "Loss of CDK4/6 activity in S/G2 phase leads to cell cycle reversal," Nature, Nature, vol. 619(7969), pages 363-370, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debasish Paul & Stephen C. Kales & James A. Cornwell & Marwa M. Afifi & Ganesha Rai & Alexey Zakharov & Anton Simeonov & Steven D. Cappell, 2022. "Revealing β-TrCP activity dynamics in live cells with a genetically encoded biosensor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Anna Höfler & Jun Yu & Jing Yang & Ziguo Zhang & Leifu Chang & Stephen H. McLaughlin & Geoffrey W. Grime & Elspeth F. Garman & Andreas Boland & David Barford, 2024. "Cryo-EM structures of apo-APC/C and APC/CCDH1:EMI1 complexes provide insights into APC/C regulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Ana Portelinha & Mariana Silva Ferreira & Tatiana Erazo & Man Jiang & Zahra Asgari & Elisa Stanchina & Anas Younes & Hans-Guido Wendel, 2023. "Synthetic lethality of drug-induced polyploidy and BCL-2 inhibition in lymphoma," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Victoria Glasenapp & Ana C. Almeida & Dalu Chang & Ivana Gasic & Nicolas Winssinger & Monica Gotta, 2025. "Spatio-temporal control of mitosis using light via a Plk1 inhibitor caged for activity and cellular permeability," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    5. Leighton H. Daigh & Debarya Saha & David L. Rosenthal & Katherine R. Ferrick & Tobias Meyer, 2024. "Uncoupling of mTORC1 from E2F activity maintains DNA damage and senescence," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Sang Bae Lee & Luciano Garofano & Aram Ko & Fulvio D’Angelo & Brulinda Frangaj & Danika Sommer & Qiwen Gan & KyeongJin Kim & Timothy Cardozo & Antonio Iavarone & Anna Lasorella, 2022. "Regulated interaction of ID2 with the anaphase-promoting complex links progression through mitosis with reactivation of cell-type-specific transcription," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Chunyang Bao & Richard W. Tourdot & Gregory J. Brunette & Chip Stewart & Lili Sun & Hideo Baba & Masayuki Watanabe & Agoston T. Agoston & Kunal Jajoo & Jon M. Davison & Katie S. Nason & Gad Getz & Ken, 2023. "Genomic signatures of past and present chromosomal instability in Barrett’s esophagus and early esophageal adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    8. Shizhong Ke & Fabin Dang & Lin Wang & Jia-Yun Chen & Mandar T. Naik & Wenxue Li & Abhishek Thavamani & Nami Kim & Nandita M. Naik & Huaxiu Sui & Wei Tang & Chenxi Qiu & Kazuhiro Koikawa & Felipe Batal, 2024. "Reciprocal antagonism of PIN1-APC/CCDH1 governs mitotic protein stability and cell cycle entry," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    9. repec:plo:pgen00:0010024 is not listed on IDEAS
    10. Marc A. Vittoria & Nathan Kingston & Kristyna Kotynkova & Eric Xia & Rui Hong & Lee Huang & Shayna McDonald & Andrew Tilston-Lunel & Revati Darp & Joshua D. Campbell & Deborah Lang & Xiaowei Xu & Crai, 2022. "Inactivation of the Hippo tumor suppressor pathway promotes melanoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Daan M. K. Soest & Paulien E. Polderman & Wytze T. F. Toom & Janneke P. Keijer & Markus J. Roosmalen & Tim M. F. Leyten & Johannes Lehmann & Susan Zwakenberg & Sasha Henau & Ruben Boxtel & Boudewijn M, 2024. "Mitochondrial H2O2 release does not directly cause damage to chromosomal DNA," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Revati Darp & Marc A. Vittoria & Neil J. Ganem & Craig J. Ceol, 2022. "Oncogenic BRAF induces whole-genome doubling through suppression of cytokinesis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Andrea Riba & Attila Oravecz & Matej Durik & Sara Jiménez & Violaine Alunni & Marie Cerciat & Matthieu Jung & Céline Keime & William M. Keyes & Nacho Molina, 2022. "Cell cycle gene regulation dynamics revealed by RNA velocity and deep-learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Nikki L. Burdett & Madelynne O. Willis & Ahwan Pandey & Laura Twomey & Sara Alaei & David D. L. Bowtell & Elizabeth L. Christie, 2024. "Timing of whole genome duplication is associated with tumor-specific MHC-II depletion in serous ovarian cancer," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Nishtha Pandey & P K Vinod, 2018. "Mathematical modelling of reversible transition between quiescence and proliferation," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-15, June.
    16. Leanne M. Brown & Ryan A. Hagenson & Tilen Koklič & Iztok Urbančič & Lu Qiao & Janez Strancar & Jason M. Sheltzer, 2024. "An elevated rate of whole-genome duplications in cancers from Black patients," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    17. Mimi Zhang & Sungsoo Kim & Hee Won Yang, 2023. "Non-canonical pathway for Rb inactivation and external signaling coordinate cell-cycle entry without CDK4/6 activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Sarasa Isobe & Ramesh V. Nair & Helen Y. Kang & Lingli Wang & Jan-Renier Moonen & Tsutomu Shinohara & Aiqin Cao & Shalina Taylor & Shoichiro Otsuki & David P. Marciano & Rebecca L. Harper & Mir S. Adi, 2023. "Reduced FOXF1 links unrepaired DNA damage to pulmonary arterial hypertension," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Aaron F. Phillips & Rumin Zhang & Mia Jaffe & Ryan Schulz & Marysol Chu Carty & Akanksha Verma & Tamar Y. Feinberg & Michael D. Arensman & Alan Chiu & Reka Letso & Nazario Bosco & Katelyn A. Queen & A, 2025. "Targeting chromosomally unstable tumors with a selective KIF18A inhibitor," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    20. Daekyu Sun & John Michael White, 2017. "Potential Mechanism of Chemo-Resistance to Gemcitabine," Novel Approaches in Drug Designing & Development, Juniper Publishers Inc., vol. 2(3), pages 50-53, August.
    21. Bingxin Lu & Samuel Winnall & William Cross & Chris P. Barnes, 2025. "Cell-cycle dependent DNA repair and replication unifies patterns of chromosome instability," Nature Communications, Nature, vol. 16(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62061-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.