IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62031-2.html
   My bibliography  Save this article

Melbournevirus encodes a shorter H2B-H2A doublet histone variant that forms structurally distinct nucleosome structures

Author

Listed:
  • Alejandro Villalta

    (University of Colorado Boulder
    University of Colorado Boulder)

  • Hugo Bisio

    (Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B))

  • Chelsea M. Toner

    (University of Colorado Boulder)

  • Chantal Abergel

    (Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B))

  • Karolin Luger

    (University of Colorado Boulder
    University of Colorado Boulder)

Abstract

Unique among viruses, some giant viruses utilize histones to organize their genomes into nucleosomes. Melbournevirus encodes a distinct H2B-H2A histone doublet variant in addition to the canonical H4-H3 and H2B-H2A doublets. This viral histone variant has a truncated H2B portion and its amino acid sequence deviates from that of the main viral H2B-H2A throughout the entire coding region. It is less abundant than the main H2B-H2A doublet, is likely essential for melbournevirus fitness, and is conserved in all Marseilleviridae. The cryo-EM structure of a nucleosome-like particle reconstituted with this H2B-H2A variant and viral H4-H3 reveals that only 90 base pairs of DNA are stably bound, significantly less than in eukaryotic nucleosomes and viral nucleosomes made with the main fused viral histone doublets. The reduced ability to bind DNA can be attributed to structural differences between variant and main H2B-H2A. Variant melbournevirus nucleosomes are less stable, possibly aiding rapid genome unpacking to initiate gene expression. Our results highlight the remarkable propensity of giant viruses to appropriate the utility of histones for their specialized purposes.

Suggested Citation

  • Alejandro Villalta & Hugo Bisio & Chelsea M. Toner & Chantal Abergel & Karolin Luger, 2025. "Melbournevirus encodes a shorter H2B-H2A doublet histone variant that forms structurally distinct nucleosome structures," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62031-2
    DOI: 10.1038/s41467-025-62031-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62031-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62031-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aghil Soman & Sook Yi Wong & Nikolay Korolev & Wahyu Surya & Simon Lattmann & Vinod K. Vogirala & Qinming Chen & Nikolay V. Berezhnoy & John Noort & Daniela Rhodes & Lars Nordenskiöld, 2022. "Columnar structure of human telomeric chromatin," Nature, Nature, vol. 609(7929), pages 1048-1055, September.
    2. Elisabeth Fabre & Sandra Jeudy & Sébastien Santini & Matthieu Legendre & Mathieu Trauchessec & Yohann Couté & Jean-Michel Claverie & Chantal Abergel, 2017. "Noumeavirus replication relies on a transient remote control of the host nucleus," Nature Communications, Nature, vol. 8(1), pages 1-12, April.
    3. Hugo Bisio & Matthieu Legendre & Claire Giry & Nadege Philippe & Jean-Marie Alempic & Sandra Jeudy & Chantal Abergel, 2023. "Evolution of giant pandoravirus revealed by CRISPR/Cas9," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    5. Karolin Luger & Armin W. Mäder & Robin K. Richmond & David F. Sargent & Timothy J. Richmond, 1997. "Crystal structure of the nucleosome core particle at 2.8 Å resolution," Nature, Nature, vol. 389(6648), pages 251-260, September.
    6. Chelsea M. Toner & Nicole M. Hoitsma & Sashi Weerawarana & Karolin Luger, 2024. "Characterization of Medusavirus encoded histones reveals nucleosome-like structures and a unique linker histone," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Samuel Schwab & Yimin Hu & Bert Erp & Marc K. M. Cajili & Marcus D. Hartmann & Birte Hernandez Alvarez & Vikram Alva & Aimee L. Boyle & Remus T. Dame, 2024. "Histones and histone variant families in prokaryotes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tae-Kyeong Jeong & R. Ciaran MacKenzie Frater & Jongha Yoon & Anja Groth & Ji-Joon Song, 2025. "CODANIN-1 sequesters ASF1 by using a histone H3 mimic helix to regulate the histone supply," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    2. Chelsea M. Toner & Nicole M. Hoitsma & Sashi Weerawarana & Karolin Luger, 2024. "Characterization of Medusavirus encoded histones reveals nucleosome-like structures and a unique linker histone," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Samuel Schwab & Yimin Hu & Bert Erp & Marc K. M. Cajili & Marcus D. Hartmann & Birte Hernandez Alvarez & Vikram Alva & Aimee L. Boyle & Remus T. Dame, 2024. "Histones and histone variant families in prokaryotes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Ke Chen & Li Wang & Zishuo Yu & Jiali Yu & Yulei Ren & Qianmin Wang & Yanhui Xu, 2024. "Structure of the human TIP60 complex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Hugo Bisio & Matthieu Legendre & Claire Giry & Nadege Philippe & Jean-Marie Alempic & Sandra Jeudy & Chantal Abergel, 2023. "Evolution of giant pandoravirus revealed by CRISPR/Cas9," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Naoki Horikoshi & Ryosuke Miyake & Chizuru Sogawa-Fujiwara & Mitsuo Ogasawara & Yoshimasa Takizawa & Hitoshi Kurumizaka, 2025. "Cryo-EM structures of the BAF-Lamin A/C complex bound to nucleosomes," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    7. Joana Segura & Ofelia Díaz-Ingelmo & Belén Martínez-García & Alba Ayats-Fraile & Christoforos Nikolaou & Joaquim Roca, 2024. "Nucleosomal DNA has topological memory," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Pantelis Livanos & Choy Kriechbaum & Sophia Remers & Arvid Herrmann & Sabine Müller, 2025. "Kinesin-12 POK2 polarization is a prerequisite for a fully functional division site and aids cell plate positioning," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    9. Surabhi Kokane & Ashutosh Gulati & Pascal F. Meier & Rei Matsuoka & Tanadet Pipatpolkai & Giuseppe Albano & Tin Manh Ho & Lucie Delemotte & Daniel Fuster & David Drew, 2025. "PIP2-mediated oligomerization of the endosomal sodium/proton exchanger NHE9," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    10. Justin Riper & Arleth O. Martinez-Claros & Lie Wang & Hannah E. Schneiderman & Sweta Maheshwari & Monica C. Pillon, 2025. "CryoEM structure of the SLFN14 endoribonuclease reveals insight into RNA binding and cleavage," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    11. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative Artificial Intelligence," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, pages 7-46, National Bureau of Economic Research, Inc.
    12. Anthony C. Bishop & Glorisé Torres-Montalvo & Sravya Kotaru & Kyle Mimun & A. Joshua Wand, 2023. "Robust automated backbone triple resonance NMR assignments of proteins using Bayesian-based simulated annealing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Namrata Kumar & Arjan F. Theil & Vera Roginskaya & Yasmin Ali & Michael Calderon & Simon C. Watkins & Ryan P. Barnes & Patricia L. Opresko & Alex Pines & Hannes Lans & Wim Vermeulen & Bennett Houten, 2022. "Global and transcription-coupled repair of 8-oxoG is initiated by nucleotide excision repair proteins," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Xin Yong & Guowen Jia & Qin Yang & Chunzhuang Zhou & Sitao Zhang & Huaqing Deng & Daniel D. Billadeau & Zhaoming Su & Da Jia, 2025. "Cryo-EM structure of the BLOC-3 complex provides insights into the pathogenesis of Hermansky-Pudlak syndrome," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    15. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    17. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Dick Schijven & Sourena Soheili-Nezhad & Simon E. Fisher & Clyde Francks, 2024. "Exome-wide analysis implicates rare protein-altering variants in human handedness," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Zhao-Shan Chen & Hsiang-Chi Huang & Xiangkun Wang & Karin Schön & Yane Jia & Michael Lebens & Danica F. Besavilla & Janarthan R. Murti & Yanhong Ji & Aishe A. Sarshad & Guohua Deng & Qiyun Zhu & David, 2025. "Influenza A Virus H7 nanobody recognizes a conserved immunodominant epitope on hemagglutinin head and confers heterosubtypic protection," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    20. Sourav Nayak & Thomas J. Peto & Michal Kucharski & Rupam Tripura & James J. Callery & Duong Tien Quang Huy & Mathieu Gendrot & Dysoley Lek & Ho Dang Trung Nghia & Rob W. Pluijm & Nguyen Dong & Le Than, 2024. "Population genomics and transcriptomics of Plasmodium falciparum in Cambodia and Vietnam uncover key components of the artemisinin resistance genetic background," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62031-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.