IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61962-0.html
   My bibliography  Save this article

ATP plays a structural role in Hsp90 function

Author

Listed:
  • Michael Reidy

    (National Institutes of Health)

  • Daniel C. Masison

    (National Institutes of Health)

Abstract

Hsp90 is a highly conserved ATP-dependent molecular chaperone that forms a clamp around client proteins. The role of ATP in Hsp90 function is unclear since cell viability requires ATP binding, but not hydrolysis. Here, we present findings that support our hypothesis that after ATP binds, the γ phosphate repositions in a regulated manner to interact with a conserved arginine (R380) and stabilize the closed clamp. We propose that the essential role of ATP in Hsp90 function is structural: ATP is a linker that physically tethers the N and M domains and stabilizes closing. Severing this link by hydrolysis facilitates reopening. Our findings support the idea that R380 is an arginine finger, a motif found in diverse NTPase families, due to its interdomain interaction with ATP. This in turn suggests that for some arginine fingers the nucleotide itself is a structural element important for stabilization of inter-domain or -subunit interactions.

Suggested Citation

  • Michael Reidy & Daniel C. Masison, 2025. "ATP plays a structural role in Hsp90 function," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61962-0
    DOI: 10.1038/s41467-025-61962-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61962-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61962-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stefan Riedl & Ecenaz Bilgen & Ganesh Agam & Viivi Hirvonen & Alexander Jussupow & Franziska Tippl & Maximilian Riedl & Andreas Maier & Christian F. W. Becker & Ville R. I. Kaila & Don C. Lamb & Johan, 2024. "Evolution of the conformational dynamics of the molecular chaperone Hsp90," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Michael Reidy & Kevin Garzillo & Daniel C. Masison, 2023. "Nucleotide exchange is sufficient for Hsp90 functions in vivo," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Sophie L. Mader & Abraham Lopez & Jannis Lawatscheck & Qi Luo & Daniel A. Rutz & Ana P. Gamiz-Hernandez & Michael Sattler & Johannes Buchner & Ville R. I. Kaila, 2020. "Conformational dynamics modulate the catalytic activity of the molecular chaperone Hsp90," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    4. Leonie Vollmar & Julia Schimpf & Bianca Hermann & Thorsten Hugel, 2024. "Cochaperones convey the energy of ATP hydrolysis for directional action of Hsp90," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Jasmeen Oberoi & Xavi Aran Guiu & Emily A. Outwin & Pascale Schellenberger & Theodoros I. Roumeliotis & Jyoti S. Choudhary & Laurence H. Pearl, 2022. "HSP90-CDC37-PP5 forms a structural platform for kinase dephosphorylation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Peter J. Watson & Christopher J. Millard & Andrew M. Riley & Naomi S. Robertson & Lyndsey C. Wright & Himali Y. Godage & Shaun M. Cowley & Andrew G. Jamieson & Barry V. L. Potter & John W. R. Schwabe, 2016. "Insights into the activation mechanism of class I HDAC complexes by inositol phosphates," Nature Communications, Nature, vol. 7(1), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Schubert & Andrea Schulze & Chrisostomos Prodromou & Hannes Neuweiler, 2021. "Two-colour single-molecule photoinduced electron transfer fluorescence imaging microscopy of chaperone dynamics," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Ivan Terterov & Daniel Nettels & Tanya Lastiza-Male & Kim Bartels & Christian Löw & Renee Vancraenenbroeck & Itay Carmel & Gabriel Rosenblum & Hagen Hofmann, 2025. "Model-free photon analysis of diffusion-based single-molecule FRET experiments," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    3. Xiaozhan Qu & Simin Wang & Shuo Zhao & Chanjuan Wan & Weiya Xu & Chengdong Huang, 2024. "The dynamic triage interplay of Hsp90 with its chaperone cycle and client binding," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Stefan Riedl & Ecenaz Bilgen & Ganesh Agam & Viivi Hirvonen & Alexander Jussupow & Franziska Tippl & Maximilian Riedl & Andreas Maier & Christian F. W. Becker & Ville R. I. Kaila & Don C. Lamb & Johan, 2024. "Evolution of the conformational dynamics of the molecular chaperone Hsp90," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Faustine Henot & Elisa Rioual & Adrien Favier & Pavel Macek & Elodie Crublet & Pierre Josso & Bernhard Brutscher & Matthias Frech & Pierre Gans & Claire Loison & Jerome Boisbouvier, 2022. "Visualizing the transiently populated closed-state of human HSP90 ATP binding domain," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Tiziano Mazza & Theodoros I. Roumeliotis & Elena Garitta & David Drew & S. Tamir Rashid & Cesare Indiveri & Jyoti S. Choudhary & Kenneth J. Linton & Konstantinos Beis, 2024. "Structural basis for the modulation of MRP2 activity by phosphorylation and drugs," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Mandy S. M. Wan & Reyhan Muhammad & Marios G. Koliopoulos & Theodoros I. Roumeliotis & Jyoti S. Choudhary & Claudio Alfieri, 2023. "Mechanism of assembly, activation and lysine selection by the SIN3B histone deacetylase complex," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Leonie G. Graf & Carlos Moreno-Yruela & Chuan Qin & Sabrina Schulze & Gottfried J. Palm & Ole Schmöker & Nancy Wang & Dianna M. Hocking & Leila Jebeli & Britta Girbardt & Leona Berndt & Babett Dörre &, 2024. "Distribution and diversity of classical deacylases in bacteria," Nature Communications, Nature, vol. 15(1), pages 1-31, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61962-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.