Author
Abstract
Rheumatoid arthritis is a common autoimmune disease characterized by chronic synovial inflammation and joint destruction, primarily driven by an imbalanced cellular metabolism and inflammatory microenvironment. While gene therapy offers a promising therapeutic approach, its effectiveness is limited by the challenges of non-specific gene expression in healthy tissues. Here, we develop a gene delivery system (namely APPC), in which near-infrared (NIR)-responsive gold nanorods are coated with chondroitin sulfate-modified polyethyleneimine to facilitate the heat-responsive targeted delivery of heme oxygenase 1 (HO-1) gene. The APPC shows favorable transfection efficiency due to its targeting ability and significantly facilitates HO-1 expression under NIR irradiation. The combination of APPC/pHO-1 and NIR can effectively reprogram the cellular metabolism and repolarize the macrophages and fibroblast-like synoviocytes, thereby inhibiting inflammation by suppressing glycolysis. Meanwhile, APPC can specifically enhance the HO-1 expression in inflamed tissues through NIR-mediated the activation of heat shock protein 70 promoter, ensuring the precise gene expression via photothermal conversion. In a collagen-induced arthritis model, APPC/pHO-1 under NIR irradiation exhibits potent therapeutic efficacy, restoring the articular microenvironmental homeostasis and mitigating the symptoms of rheumatoid arthritis. These findings highlight the potential of APPC/pHO-1 nanoparticles in the gene therapy of rheumatoid arthritis and other inflammatory diseases.
Suggested Citation
Hugang Zhang & Jiaxin Jia & Hanyu Liu & Haobo Han & Quanshun Li, 2025.
"Near-infrared light-driven metabolic reprogramming of synoviocytes for the treatment of rheumatoid arthritis,"
Nature Communications, Nature, vol. 16(1), pages 1-21, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61923-7
DOI: 10.1038/s41467-025-61923-7
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61923-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.