Author
Listed:
- Beatrice Borsari
(Yale University
Yale University)
- Mor Frank
(Yale University
Yale University)
- Eve S. Wattenberg
(Yale University
Yale University)
- Ke Xu
(Yale University)
- Susanna X. Liu
(Yale University
Yale University)
- Xuezhu Yu
(Yale University
Yale University)
- Mark Gerstein
(Yale University
Yale University
Yale University
Yale University)
Abstract
Many genome-wide studies capture isolated moments in cell differentiation or organismal development. Conversely, longitudinal studies provide a more direct way to study these kinetic processes. Here, we present an approach for modeling gene-expression and chromatin kinetics from such studies: chronODE, an interpretable framework based on ordinary differential equations. chronODE incorporates two parameters that capture biophysical constraints governing the initial cooperativity and later saturation in gene expression. These parameters group genes into three major kinetic patterns: accelerators, switchers, and decelerators. Applying chronODE to bulk and single-cell time-series data from mouse brain development reveals that most genes (~87%) follow simple logistic kinetics. Among them, genes with rapid acceleration and high saturation values are rare, highlighting biochemical limitations that prevent cells from attaining both simultaneously. Early- and late-emerging cell types display distinct kinetic patterns, with essential genes ramping up faster. Extending chronODE to chromatin, we find that genes regulated by both enhancer and silencer cis-regulatory elements are enriched in brain-specific functions. Finally, we develop a bidirectional recurrent neural network to predict changes in gene expression from corresponding chromatin changes, successfully capturing the cumulative effect of multiple regulatory elements. Overall, our framework allows investigation of the kinetics of gene regulation in diverse biological systems.
Suggested Citation
Beatrice Borsari & Mor Frank & Eve S. Wattenberg & Ke Xu & Susanna X. Liu & Xuezhu Yu & Mark Gerstein, 2025.
"The chronODE framework for modelling multi-omic time series with ordinary differential equations and machine learning,"
Nature Communications, Nature, vol. 16(1), pages 1-16, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61921-9
DOI: 10.1038/s41467-025-61921-9
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61921-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.