Author
Listed:
- Dennis Kollofrath
(Leibniz Universität Hannover)
- Florian Kuhlmann
(Leibniz Universität Hannover)
- Sebastian Requardt
(Leibniz Universität Hannover)
- Yaşar Krysiak
(Leibniz Universität Hannover)
- Sebastian Polarz
(Leibniz Universität Hannover)
Abstract
Microplastics pose a significant environmental challenge, causing harm to organisms through inflammation and oxidative stress. Although traditional adsorbents effectively capture pollutants, they are limited by their localized action and require laborious recycling processes. We introduce a buoyancy-driven hybrid hydrogel that functions as a self-regulating shuttle, capable of transporting and decomposing contaminants without external intervention. By leveraging thermally switchable buoyancy, the material cyclically ascends from the seabed to the water surface, facilitating pollutant degradation, before descending to restart the process. This motion is enabled by vinyl-functionalized porous organosilica and thermoresponsive poly(N-isopropylacrylamide) (pNIPAM), which allow for reversible gas bubble storage and precise control over ascent and descent dynamics. As a demonstration, we apply this platform to microplastic decomposition, where light-induced reactive oxygen species effectively degrade collected particles. Adjustments to catalyst concentration further optimize transport kinetics, enhancing efficiency across various conditions. While microplastic remediation showcases its capabilities, this shuttle represents a broadly adaptable system for sustainable pollutant removal and environmental remediation.
Suggested Citation
Dennis Kollofrath & Florian Kuhlmann & Sebastian Requardt & Yaşar Krysiak & Sebastian Polarz, 2025.
"A self-regulating shuttle for autonomous seek and destroy of microplastics from wastewater,"
Nature Communications, Nature, vol. 16(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61899-4
DOI: 10.1038/s41467-025-61899-4
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61899-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.