IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61869-w.html
   My bibliography  Save this article

Fractional-statistics-induced entanglement from Andreev-like tunneling

Author

Listed:
  • Gu Zhang

    (Nanjing University
    Nanjing University
    Beijing Academy of Quantum Information Sciences)

  • Pierre Glidic

    (Centre de Nanosciences et de Nanotechnologies
    Lund University)

  • Frédéric Pierre

    (Centre de Nanosciences et de Nanotechnologies)

  • Igor Gornyi

    (Karlsruhe Institute of Technology
    Karlsruhe Institute of Technology)

  • Yuval Gefen

    (Weizmann Institute of Science)

Abstract

The role of anyonic statistics stands as a cornerstone in the landscape of topological quantum techniques. While recent years have brought forth encouraging and persuasive strides in detecting anyons, a significant facet remains unexplored, especially in view of connecting anyonic physics to quantum information platforms—whether and how entanglement can be generated by anyonic braiding. Here, we demonstrate that even when two anyonic subsystems (represented by anyonic beams) are connected only by electron tunneling, entanglement between them, manifesting fractional statistics, is generated. To demonstrate this physics, we rely on a platform where fractional quantum Hall edges are bridged by a quantum point contact that allows only transmission of fermions (so-called Andreev-like tunneling). This invokes the physics of two-beam collisions in an anyonic Hong-Ou-Mandel collider, accompanied by a process that we dub anyon-quasihole braiding. We define an entanglement pointer—a current-noise-based function tailored to quantify entanglement associated with quasiparticle fractional statistics. Our work, which exposes, both in theory and in experiment, entanglement associated with anyonic statistics and braiding, prospectively paves the way to the exploration of entanglement induced by non-Abelian statistics.

Suggested Citation

  • Gu Zhang & Pierre Glidic & Frédéric Pierre & Igor Gornyi & Yuval Gefen, 2025. "Fractional-statistics-induced entanglement from Andreev-like tunneling," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61869-w
    DOI: 10.1038/s41467-025-61869-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61869-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61869-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Nakamura & S. Liang & G. C. Gardner & M. J. Manfra, 2022. "Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwanchul Jung & Dongsung T. Park & Seokyeong Lee & Uhjin Kim & Chanuk Yang & Jehyun Kim & V. Umansky & Dohun Kim & H.-S. Sim & Yunchul Chung & Hyoungsoon Choi & Hyung Kook Choi, 2023. "Observation of electronic modes in open cavity resonator," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Thomas Werkmeister & James R. Ehrets & Yuval Ronen & Marie E. Wesson & Danial Najafabadi & Zezhu Wei & Kenji Watanabe & Takashi Taniguchi & D. E. Feldman & Bertrand I. Halperin & Amir Yacoby & Philip , 2024. "Strongly coupled edge states in a graphene quantum Hall interferometer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61869-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.