IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61837-4.html
   My bibliography  Save this article

Real-time capture of σN transcription initiation intermediates reveals mechanism of ATPase-driven activation by limited unfolding

Author

Listed:
  • Andreas U. Mueller

    (The Rockefeller University)

  • Nina Molina

    (The Rockefeller University)

  • B. Tracy Nixon

    (Penn State University)

  • Seth A. Darst

    (The Rockefeller University)

Abstract

Bacterial σ factors bind RNA polymerase (E) to form holoenzyme (Eσ), conferring promoter specificity to E and playing a key role in transcription bubble formation. σN is unique among σ factors in its structure and functional mechanism, requiring activation by specialized AAA+ ATPases. EσN forms an inactive promoter complex where the N-terminal σN region I (σN-RI) threads through a small DNA bubble. On the opposite side of the DNA, the ATPase engages σN-RI within the pore of its hexameric ring. Here, we perform kinetics-guided structural analysis of de novo formed EσN initiation complexes and engineer a biochemical assay to measure ATPase-mediated σN-RI translocation during promoter melting. We show that the ATPase exerts mechanical action to translocate about 30 residues of σN-RI through the DNA bubble, disrupting inhibitory structures of σN to allow full transcription bubble formation. A local charge switch of σN-RI from positive to negative may help facilitate disengagement of the otherwise processive ATPase, allowing subsequent σN disentanglement from the DNA bubble.

Suggested Citation

  • Andreas U. Mueller & Nina Molina & B. Tracy Nixon & Seth A. Darst, 2025. "Real-time capture of σN transcription initiation intermediates reveals mechanism of ATPase-driven activation by limited unfolding," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61837-4
    DOI: 10.1038/s41467-025-61837-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61837-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61837-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mikhail Kavalchuk & Ahmad Jomaa & Andreas U. Müller & Eilika Weber-Ban, 2022. "Structural basis of prokaryotic ubiquitin-like protein engagement and translocation by the mycobacterial Mpa-proteasome complex," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Claudio Alfieri & Leifu Chang & David Barford, 2018. "Mechanism for remodelling of the cell cycle checkpoint protein MAD2 by the ATPase TRIP13," Nature, Nature, vol. 559(7713), pages 274-278, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian Cooney & Heidi L. Schubert & Karina Cedeno & Olivia N. Fisher & Richard Carson & John C. Price & Christopher P. Hill & Peter S. Shen, 2024. "Visualization of the Cdc48 AAA+ ATPase protein unfolding pathway," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Tatjana Rosen & Rafal Zdanowicz & Yasser El Hadeg & Pavel Afanasyev & Daniel Boehringer & Alexander Leitner & Rudi Glockshuber & Eilika Weber-Ban, 2025. "Substrates bind to residues lining the ring of asymmetrically engaged bacterial proteasome activator Bpa," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    3. Yuen Lam Dora Ng & Evelyn Ramberger & Stephan R. Bohl & Anna Dolnik & Christian Steinebach & Theresia Conrad & Sina Müller & Oliver Popp & Miriam Kull & Mohamed Haji & Michael Gütschow & Hartmut Döhne, 2022. "Proteomic profiling reveals CDK6 upregulation as a targetable resistance mechanism for lenalidomide in multiple myeloma," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Yang Xu & Han Han & Ian Cooney & Yuxuan Guo & Noah G. Moran & Nathan R. Zuniga & John C. Price & Christopher P. Hill & Peter S. Shen, 2022. "Active conformation of the p97-p47 unfoldase complex," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61837-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.