IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61818-7.html
   My bibliography  Save this article

Elaboration of molecular glues that target TRIM21 into TRIMTACs that degrade protein aggregates

Author

Listed:
  • Marc A. Scemama de Gialluly

    (Case Western Reserve University School of Medicine
    Case Western Reserve University School of Medicine
    Case Western Reserve University School of Medicine
    Case Western Reserve University School of Medicine)

  • Anthony R. Allen

    (Case Western Reserve University School of Medicine
    Case Western Reserve University School of Medicine)

  • Elijah H. Hayes

    (Case Western Reserve University School of Medicine
    Case Western Reserve University School of Medicine)

  • Patrick Zhuang

    (Case Western Reserve University School of Medicine
    Case Western Reserve University School of Medicine
    Case Western Reserve University School of Medicine)

  • Ralston B. Goldfarb

    (Case Western Reserve University School of Medicine
    Case Western Reserve University School of Medicine)

  • Amanda N. Farrar

    (Case Western Reserve University School of Medicine
    Case Western Reserve University School of Medicine)

  • Yuriy Fedorov

    (Case Western Reserve University School of Medicine
    Case Western Reserve University School of Medicine)

  • Drew J. Adams

    (Case Western Reserve University School of Medicine
    Case Western Reserve University School of Medicine
    Case Western Reserve University School of Medicine)

Abstract

Approaches for the discovery of molecular glues remain limited. Here we report a phenotypic screening approach in which cytotoxins whose mechanisms require ubiquitination show a gain of viability following pharmacological inhibition of the Ubiquitin-like modifier activating enzyme (UBA1/UAE). This approach reveals PRLX-93936 and BMS-214662 as molecular glues that directly target the E3 ligase TRIM21 to induce degradation of nucleoporin proteins and inhibit nuclear trafficking. The cytotoxicity of these agents correlates strongly with TRIM21 expression, suggesting re-evaluation of these clinically tested agents in patients with TRIM21-high cancers. Relative to recently disclosed TRIM21-targeting glues, PRLX-93936 and newly-synthesized analogs represent a distinct structural series, lack known cellular off-targets, and offer greatly enhanced potency. Additionally, we elaborate PRLX-93936 to a heterobifunctional degrader that uses wild-type TRIM21 to degrade a multimeric protein. Together, our work creates opportunities for targeted protein degradation and enables the design of additional TRIM21-targeting glues and Proteolysis-Targeting Chimeras (PROTACs).

Suggested Citation

  • Marc A. Scemama de Gialluly & Anthony R. Allen & Elijah H. Hayes & Patrick Zhuang & Ralston B. Goldfarb & Amanda N. Farrar & Yuriy Fedorov & Drew J. Adams, 2025. "Elaboration of molecular glues that target TRIM21 into TRIMTACs that degrade protein aggregates," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61818-7
    DOI: 10.1038/s41467-025-61818-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61818-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61818-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianping Jin & Xue Li & Steven P. Gygi & J. Wade Harper, 2007. "Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging," Nature, Nature, vol. 447(7148), pages 1135-1138, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. repec:plo:pone00:0096666 is not listed on IDEAS
    3. Ngoc Truongvan & Shurong Li & Mohit Misra & Monika Kuhn & Hermann Schindelin, 2022. "Structures of UBA6 explain its dual specificity for ubiquitin and FAT10," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Lingmin Yuan & Fei Gao & Zongyang Lv & Digant Nayak & Anindita Nayak & Priscila dos Santos Bury & Kristin E. Cano & Lijia Jia & Natalia Oleinik & Firdevs Cansu Atilgan & Besim Ogretmen & Katelyn M. Wi, 2022. "Crystal structures reveal catalytic and regulatory mechanisms of the dual-specificity ubiquitin/FAT10 E1 enzyme Uba6," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Iona Wallace & Kheewoong Baek & J. Rajan Prabu & Ronnald Vollrath & Susanne Gronau & Brenda A. Schulman & Kirby N. Swatek, 2023. "Insights into the ISG15 transfer cascade by the UBE1L activating enzyme," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61818-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.