IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61675-4.html
   My bibliography  Save this article

Living therapeutics of nonpathogenic bacteria as biosynthesis factory and active carriers for enhancing tumor-targeted therapy

Author

Listed:
  • Mengna Dong

    (Huazhong University of Science and Technology)

  • Xinhui Yang

    (Huazhong University of Science and Technology)

  • Wenqian Zhang

    (Huazhong University of Science and Technology)

  • Yuzhi Qiu

    (Huazhong University of Science and Technology)

  • Peng Song

    (Huazhong University of Science and Technology)

  • Hongfang Liu

    (Huazhong University of Science and Technology)

  • Yajiang Yang

    (Huazhong University of Science and Technology)

  • Xiangliang Yang

    (National Engineering Research Center for Nanomedicine
    Huazhong University of Science and Technology)

  • Qin Wang

    (Huazhong University of Science and Technology
    National Engineering Research Center for Nanomedicine)

Abstract

Anaerobic bacteria-mediated tumor therapy faces multiple challenges, including potential toxic side effects, complex manufacturing processes, and impaired hypoxic targeting. Here, based on the excellent biocompatibility and distinctive metabolic ability of natural anaerobic sulfate-reducing bacteria (SRB) to dissimilate sulfate into sulfide, we construct in situ-biosynthesized ferrous sulfide nanoparticle-SRB (FeS@SRB) biohybrid to enhance tumor-targeted therapy. Interestingly, SRB acts as both a biosynthesis factory and active tumor-targeted delivery vehicles. Our systematic studies reveal that FeS@SRB has excellent biosafety and tumor targeting capabilities, achieving over 50% tumor delivery efficiency in female mice post-intravenous injection, which is 17 times higher than that of conventional chemically-synthesized FeS@BSA nanoparticles. Upon near-infrared laser irradiation, FeS@SRB hybrids exhibit synergistic photothermal-chemodynamic effect, amplifying oxidative stress to trigger tumor cells ferroptosis and apoptosis, thereby effectively suppressing both subcutaneous and orthotopic tumor growth. This SRB-based therapeutic strategy expands research into tumor-targeting platforms and the biosynthesis of metal sulfide nanoparticles for enhanced tumor therapy.

Suggested Citation

  • Mengna Dong & Xinhui Yang & Wenqian Zhang & Yuzhi Qiu & Peng Song & Hongfang Liu & Yajiang Yang & Xiangliang Yang & Qin Wang, 2025. "Living therapeutics of nonpathogenic bacteria as biosynthesis factory and active carriers for enhancing tumor-targeted therapy," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61675-4
    DOI: 10.1038/s41467-025-61675-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61675-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61675-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huan Yang & Lanqian Gong & Hongming Wang & Chungli Dong & Junlei Wang & Kai Qi & Hongfang Liu & Xingpeng Guo & Bao Yu Xia, 2020. "Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Yanrong Dong & Ziqing Gao & Junzhen Di & Dong Wang & Zhenhua Yang & Yunfeng Wang & Zhoufei Xie, 2023. "Study on the Effectiveness of Sulfate Reducing Bacteria to Remove Heavy Metals (Fe, Mn, Cu, Cr) in Acid Mine Drainage," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Hu & Yao Zheng & Jing Jin & Yantao Wang & Yong Peng & Jie Yin & Wei Shen & Yichao Hou & Liu Zhu & Li An & Min Lu & Pinxian Xi & Chun-Hua Yan, 2023. "Understanding the sulphur-oxygen exchange process of metal sulphides prior to oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Lei Wan & Maobin Pang & Junfa Le & Ziang Xu & Hangyu Zhou & Qin Xu & Baoguo Wang, 2022. "Oriented intergrowth of the catalyst layer in membrane electrode assembly for alkaline water electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Yong Kang & Lingling Xu & Jinrui Dong & Xue Yuan & Jiamin Ye & Yueyue Fan & Bing Liu & Julin Xie & Xiaoyuan Ji, 2024. "Programmed microalgae-gel promotes chronic wound healing in diabetes," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Xiongwei Zhong & Xiao Xiao & Qizhen Li & Mengtian Zhang & Zhitong Li & Leyi Gao & Biao Chen & Zhiyang Zheng & Qingjin Fu & Xingzhu Wang & Guangmin Zhou & Baomin Xu, 2024. "Understanding the active site in chameleon-like bifunctional catalyst for practical rechargeable zinc-air batteries," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61675-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.