IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61668-3.html
   My bibliography  Save this article

Redox state of subducted sediments controls porphyry copper mineralization along the Tethyan belt

Author

Listed:
  • Huawei Li

    (Chinese Academy of Geological Sciences
    Peking University)

  • Zhiming Yang

    (Chinese Academy of Geological Sciences)

  • Yongjun Lu

    (RSC
    The University of Western Australia)

  • Zengqian Hou

    (Chinese Academy of Geological Sciences)

Abstract

The Tethyan orogenic belt hosts numerous world-class porphyry copper deposits, with most forming during the Cenozoic continental collision and fewer during earlier Mesozoic subduction. To understand this pattern, we integrate redox indicators from detrital zircon grains with constraints from sedimentary geology and granite geochemistry during these times. Our analysis reveals a major shift from reduced magmas forming during the Mesozoic to more oxidized intrusive systems in the Cenozoic. Here we show that subduction of organic-rich, reduced marine sediments in the Mesozoic suppressed the oxidation state of arc magmas, locking chalcophile elements in the lower crust and inhibiting the formation of porphyry Cu deposits. In contrast, the subduction of more oxidized continental sediments during Cenozoic collision elevated the mantle’s oxidation state, releasing stored copper to melts that form porphyry deposits. These findings highlight the critical role of redox state of subducted sediments and tectonic history in shaping the distribution of porphyry mineralization along the Tethyan belt.

Suggested Citation

  • Huawei Li & Zhiming Yang & Yongjun Lu & Zengqian Hou, 2025. "Redox state of subducted sediments controls porphyry copper mineralization along the Tethyan belt," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61668-3
    DOI: 10.1038/s41467-025-61668-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61668-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61668-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fangyang Hu & Hehe Jiang & Bo Wan & Mihai N. Ducea & Lei Gao & Fu-Yuan Wu, 2024. "Latitude-dependent oxygen fugacity in arc magmas," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61668-3. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.