IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61649-6.html
   My bibliography  Save this article

Programmable memristors with two-dimensional nanofluidic channels

Author

Listed:
  • Abdulghani Ismail

    (The University of Manchester
    The University of Manchester)

  • Gwang-Hyeon Nam

    (The University of Manchester
    The University of Manchester)

  • Aziz Lokhandwala

    (The University of Manchester
    The University of Manchester)

  • Siddhi Vinayak Pandey

    (The University of Manchester
    The University of Manchester)

  • Kalluvadi Veetil Saurav

    (The University of Manchester
    The University of Manchester)

  • Yi You

    (The University of Manchester
    The University of Manchester)

  • Hiran Jyothilal

    (The University of Manchester
    The University of Manchester)

  • Solleti Goutham

    (The University of Manchester
    The University of Manchester)

  • Ravalika Sajja

    (The University of Manchester
    The University of Manchester)

  • Ashok Keerthi

    (The University of Manchester
    The University of Manchester
    The University of Manchester)

  • Boya Radha

    (The University of Manchester
    The University of Manchester
    The University of Manchester)

Abstract

Nanofluidic memristors, obtained by confining aqueous salt electrolyte within nanoscale channels, offer low energy consumption and the ability to mimic biological learning. Theoretically, four different types of memristors are possible, differentiated by their hysteresis loop direction. Here, we show that by varying electrolyte composition, pH, applied voltage frequency, channel material and height, all four memristor types can emerge in nanofluidic systems. We observed two hitherto unidentified memristor types in 2D nanochannels and investigated their molecular origins. A minimal mathematical model incorporating ion–ion interactions, surface charge, and channel entrance depletion successfully reproduces the observed memristive behaviors. We further investigate the impact of temperature on ionic mobility and memristors characteristics. In this work, we show that the channels display both volatile and non-volatile memory, including short-term depression akin to synapses, with signal recovery over time. These results suggest that nanofluidic devices may enable new neuromorphic architectures for pattern recognition and adaptive information processing.

Suggested Citation

  • Abdulghani Ismail & Gwang-Hyeon Nam & Aziz Lokhandwala & Siddhi Vinayak Pandey & Kalluvadi Veetil Saurav & Yi You & Hiran Jyothilal & Solleti Goutham & Ravalika Sajja & Ashok Keerthi & Boya Radha, 2025. "Programmable memristors with two-dimensional nanofluidic channels," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61649-6
    DOI: 10.1038/s41467-025-61649-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61649-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61649-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. B. Radha & A. Esfandiar & F. C. Wang & A. P. Rooney & K. Gopinadhan & A. Keerthi & A. Mishchenko & A. Janardanan & P. Blake & L. Fumagalli & M. Lozada-Hidalgo & S. Garaj & S. J. Haigh & I. V. Grigorie, 2016. "Molecular transport through capillaries made with atomic-scale precision," Nature, Nature, vol. 538(7624), pages 222-225, October.
    2. Gonçalo Paulo & Ke Sun & Giovanni Di Muccio & Alberto Gubbiotti & Blasco Morozzo della Rocca & Jia Geng & Giovanni Maglia & Mauro Chinappi & Alberto Giacomello, 2023. "Hydrophobically gated memristive nanopores for neuromorphic applications," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaofan Zhou & Hongjie Gao & Saiyu Bu & Haotian Wu & Fan Liang & Fangfang Li & Zhaoning Hu & Yixuan Zhao & Bingbing Guo & Zelong Li & Li Yin & Xiaokai Hu & Qin Xie & Yang Su & Zhongfan Liu & Li Lin, 2025. "Principles for fabricating moisture barrier films via stacked Janus graphene layers," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    2. Zhipeng Wang & Liqin Huang & Xue Dong & Tong Wu & Qi Qing & Jing Chen & Yuexiang Lu & Chao Xu, 2023. "Ion sieving in graphene oxide membrane enables efficient actinides/lanthanides separation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Cheng Chi & Gongze Liu & Meng An & Yufeng Zhang & Dongxing Song & Xin Qi & Chunyu Zhao & Zequn Wang & Yanzheng Du & Zizhen Lin & Yang Lu & He Huang & Yang Li & Chongjia Lin & Weigang Ma & Baoling Huan, 2023. "Reversible bipolar thermopower of ionic thermoelectric polymer composite for cyclic energy generation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Xinyue Wen & Tobias Foller & Xiaoheng Jin & Tiziana Musso & Priyank Kumar & Rakesh Joshi, 2022. "Understanding water transport through graphene-based nanochannels via experimental control of slip length," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Bo Lin & Jian Jiang & Xiao Cheng Zeng & Lei Li, 2023. "Temperature-pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Kuichang Zuo & Xiang Zhang & Xiaochuan Huang & Eliezer F. Oliveira & Hua Guo & Tianshu Zhai & Weipeng Wang & Pedro J. J. Alvarez & Menachem Elimelech & Pulickel M. Ajayan & Jun Lou & Qilin Li, 2022. "Ultrahigh resistance of hexagonal boron nitride to mineral scale formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Lucia Coronel & Giovanni Muccio & Brad S. Rothberg & Alberto Giacomello & Vincenzo Carnevale, 2025. "Lipid-mediated hydrophobic gating in the BK potassium channel," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    8. Nathan Ronceray & Massimo Spina & Vanessa Hui Yin Chou & Chwee Teck Lim & Andre K. Geim & Slaven Garaj, 2024. "Elastocapillarity-driven 2D nano-switches enable zeptoliter-scale liquid encapsulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Jincheng Tong & Nathan Bruyn & Adriana Alieva & Elizabeth. J. Legge & Matthew Boyes & Xiuju Song & Alvin J. Walisinghe & Andrew J. Pollard & Michael W. Anderson & Thomas Vetter & Manuel Melle-Franco &, 2024. "Crystallization of molecular layers produced under confinement onto a surface," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Qian Zhang & Bo Gao & Ling Zhang & Xiaopeng Liu & Jixiang Cui & Yijun Cao & Hongbo Zeng & Qun Xu & Xinwei Cui & Lei Jiang, 2023. "Anomalous water molecular gating from atomic-scale graphene capillaries for precise and ultrafast molecular sieving," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Makusu Tsutsui & Wei-Lun Hsu & Chien Hsu & Denis Garoli & Shukun Weng & Hirofumi Daiguji & Tomoji Kawai, 2025. "Transmembrane voltage-gated nanopores controlled by electrically tunable in-pore chemistry," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    12. Tianshu Chu & Ze Zhou & Pengfei Tian & Tingting Yu & Cheng Lian & Bowei Zhang & Fu-Zhen Xuan, 2024. "Nanofluidic sensing inspired by the anomalous water dynamics in electrical angstrom-scale channels," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Junkai Fang & Guozhen Zhang & Marc-Antoni Goulet & Peipei Zuo & Yu Zhou & Hui Li & Jun Jiang & Michael D. Guiver & Zhengjin Yang & Tongwen Xu, 2025. "High selectivity framework polymer membranes chemically tuned towards fast anion conduction," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    14. Zhangcai Zhang & Lixin Liang & Jianze Feng & Guangjin Hou & Wencai Ren, 2024. "Significant enhancement of proton conductivity in solid acid at the monolayer limit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Weiming Wang & Qingguo Liu & Yingnan Liu & Rigong Zhang & Tian Cheng & Youguo Yan & Qianze Hu & Tingting Li, 2023. "Research Status, Existing Problems, and the Prospect of New Methods of Determining the Lower Limit of the Physical Properties of Tight Sandstone Reservoirs," Energies, MDPI, vol. 16(15), pages 1-19, July.
    16. Mingzhan Wang & Qinsi Xiong & Xiaolin Yue & Gangbin Yan & Yu Han & Zhiheng Lyu & Zhen Li & Leeann Sun & Eli Hoenig & Kangli Xu & Nicholas H. C. Lewis & Kenneth M. Merz & Qian Chen & George C. Schatz &, 2025. "Cooperative and inhibitory ion transport in functionalized angstrom-scale two-dimensional channels," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    17. Peifu Cheng & Francesco Fornasiero & Melinda L. Jue & Wonhee Ko & An-Ping Li & Juan Carlos Idrobo & Michael S. H. Boutilier & Piran R. Kidambi, 2022. "Differences in water and vapor transport through angstrom-scale pores in atomically thin membranes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Yuan Hou & Jingzhuo Zhou & Zezhou He & Juzheng Chen & Mengya Zhu & HengAn Wu & Yang Lu, 2024. "Tuning instability in suspended monolayer 2D materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Ng, Ving Onn & Hong, XiangYu & Yu, Hao & Wu, HengAn & Hung, Yew Mun, 2022. "Anomalously enhanced thermal performance of micro heat pipes coated with heterogeneous superwettable graphene nanostructures," Applied Energy, Elsevier, vol. 326(C).
    20. Nawapong Unsuree & Sorasak Phanphak & Pongthep Prajongtat & Aritsa Bunpheng & Kulpavee Jitapunkul & Pornpis Kongputhon & Pannaree Srinoi & Pawin Iamprasertkun & Wisit Hirunpinyopas, 2021. "A Review: Ion Transport of Two-Dimensional Materials in Novel Technologies from Macro to Nanoscopic Perspectives," Energies, MDPI, vol. 14(18), pages 1-38, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61649-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.