IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61542-2.html
   My bibliography  Save this article

Orbitrap noise structure and method for noise unbiased multivariate analysis

Author

Listed:
  • Michael R. Keenan

    (Independent)

  • Gustavo F. Trindade

    (NiCE-MSI)

  • Alexander Pirkl

    (IONTOF GmbH)

  • Clare L. Newell

    (The Francis Crick Institute)

  • Yuhong Jin

    (The Francis Crick Institute)

  • Konstantin Aizikov

    (Thermo Fisher Scientific)

  • Andreas Dannhorn

    (AstraZeneca)

  • Junting Zhang

    (NiCE-MSI)

  • Lidija Matjačić

    (NiCE-MSI)

  • Henrik Arlinghaus

    (IONTOF GmbH)

  • Anya Eyres

    (NiCE-MSI)

  • Rasmus Havelund

    (NiCE-MSI)

  • Richard J. A. Goodwin

    (AstraZeneca)

  • Zoltan Takats

    (Imperial College London)

  • Josephine Bunch

    (NiCE-MSI)

  • Alex P. Gould

    (The Francis Crick Institute)

  • Alexander Makarov

    (Thermo Fisher Scientific
    University of Utrecht)

  • Ian S. Gilmore

    (NiCE-MSI)

Abstract

Orbitrap mass spectrometry is widely used in the life-sciences. However, like all mass spectrometers, non-uniform (heteroscedastic) noise introduces bias in multivariate analysis complicating data interpretation. Here, we study the noise structure of an Orbitrap mass analyser integrated into a secondary ion mass spectrometer (OrbiSIMS). Using a stable primary ion beam to provide a well-controlled source of ions from a silver sample, we find that noise has three characteristic regimes: at low signals the Orbitrap detector noise and a censoring algorithm dominates; at intermediate signals counting noise specific to the ion emission process is most significant; and at high signals additional sources of measurement variation become important. Using this understanding, we developed a generative model for Orbitrap data that accounts for the noise distribution and introduce a scaling method, termed WSoR, to reduce the effects of noise bias in multivariate analysis. We compare WSoR performance with no-scaling and existing scaling methods for three biological imaging data sets including drosophila central nervous system, mouse testis and a desorption electrospray ionisation (DESI) image of a rat liver. WSoR consistently performed best at discriminating chemical information from noise. The performance of the other methods varied on a case-by-case basis, complicating the analysis.

Suggested Citation

  • Michael R. Keenan & Gustavo F. Trindade & Alexander Pirkl & Clare L. Newell & Yuhong Jin & Konstantin Aizikov & Andreas Dannhorn & Junting Zhang & Lidija Matjačić & Henrik Arlinghaus & Anya Eyres & Ra, 2025. "Orbitrap noise structure and method for noise unbiased multivariate analysis," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61542-2
    DOI: 10.1038/s41467-025-61542-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61542-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61542-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gustavo F. Trindade & Soohwan Sul & Joonghyuk Kim & Rasmus Havelund & Anya Eyres & Sungjun Park & Youngsik Shin & Hye Jin Bae & Young Mo Sung & Lidija Matjacic & Yongsik Jung & Jungyeon Won & Woo Sung, 2023. "Direct identification of interfacial degradation in blue OLEDs using nanoscale chemical depth profiling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Michael E. Tipping & Christopher M. Bishop, 1999. "Probabilistic Principal Component Analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 611-622.
    3. Alexander Makarov, 2019. "Orbitrap journey: taming the ion rings," Nature Communications, Nature, vol. 10(1), pages 1-3, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    2. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    3. Chen, Andrew Y. & McCoy, Jack, 2024. "Missing values handling for machine learning portfolios," Journal of Financial Economics, Elsevier, vol. 155(C).
    4. Wang, Shao-Hsuan & Huang, Su-Yun, 2022. "Perturbation theory for cross data matrix-based PCA," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    5. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    6. Jiaju Miao & Pawel Polak, 2023. "Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy," Papers 2304.09947, arXiv.org.
    7. Jingying Yang, 2024. "Element Aggregation for Estimation of High-Dimensional Covariance Matrices," Mathematics, MDPI, vol. 12(7), pages 1-16, March.
    8. Dorota Toczydlowska & Gareth W. Peters, 2018. "Financial Big Data Solutions for State Space Panel Regression in Interest Rate Dynamics," Econometrics, MDPI, vol. 6(3), pages 1-45, July.
    9. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    10. Matteo Barigozzi, 2023. "Asymptotic equivalence of Principal Components and Quasi Maximum Likelihood estimators in Large Approximate Factor Models," Papers 2307.09864, arXiv.org, revised Jun 2024.
    11. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    12. Johannes Burge & Priyank Jaini, 2017. "Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-32, February.
    13. Tilman M. Davies & Sudipto Banerjee & Adam P. Martin & Rose E. Turnbull, 2022. "A nearest‐neighbour Gaussian process spatial factor model for censored, multi‐depth geochemical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 1014-1043, August.
    14. el Bouhaddani, Said & Uh, Hae-Won & Hayward, Caroline & Jongbloed, Geurt & Houwing-Duistermaat, Jeanine, 2018. "Probabilistic partial least squares model: Identifiability, estimation and application," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 331-346.
    15. Eduardo R de Oliveira & Pedro H Bugatti & Priscila T M Saito, 2023. "Assessment of clustering techniques to support the analyses of soybean seed vigor," PLOS ONE, Public Library of Science, vol. 18(8), pages 1-20, August.
    16. Nolan, Tui H. & Richardson, Sylvia & Ruffieux, Hélène, 2025. "Efficient Bayesian functional principal component analysis of irregularly-observed multivariate curves," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
    17. Jianhua Zhao & Changchun Shang & Shulan Li & Ling Xin & Philip L. H. Yu, 2025. "Choosing the number of factors in factor analysis with incomplete data via a novel hierarchical Bayesian information criterion," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 19(1), pages 209-235, March.
    18. Stefan Sommer, 2019. "An Infinitesimal Probabilistic Model for Principal Component Analysis of Manifold Valued Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 37-62, February.
    19. Seppo Pulkkinen & Marko Mäkelä & Napsu Karmitsa, 2014. "A generative model and a generalized trust region Newton method for noise reduction," Computational Optimization and Applications, Springer, vol. 57(1), pages 129-165, January.
    20. Gen Li & Sungkyu Jung, 2017. "Incorporating covariates into integrated factor analysis of multi‐view data," Biometrics, The International Biometric Society, vol. 73(4), pages 1433-1442, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61542-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.