Author
Listed:
- Damien Restagno
(Sanford-Burnham-Prebys Medical Discovery Institute)
- Mayank Saraswat
(Sanford-Burnham-Prebys Medical Discovery Institute)
- Peter V. Aziz
(Sanford-Burnham-Prebys Medical Discovery Institute)
- Kathryn Smith
(Sanford-Burnham-Prebys Medical Discovery Institute)
- Amanda J. Roberts
(Scripps Research Institute)
- John Hintze
(Sanford-Burnham-Prebys Medical Discovery Institute)
- Jamey D. Marth
(Sanford-Burnham-Prebys Medical Discovery Institute)
Abstract
Circulating blood proteins and enzymes are maintained within normal physiological and clinically relevant concentration ranges. Excursions from normality include diagnostic markers and causes of disease. Rapid and persistent changes in the levels and functions of circulating blood components can reflect the functions of multiple endocytic lectin receptors. The majority of non-albumin blood proteins are post-translationally modified with sialylated N-glycans bearing cryptic ligands of various endocytic lectin receptors. During time in circulation, these cryptic ligands are progressively unmasked thereby contributing to glycoprotein half-life and abundance. The relationships between distinct lectin receptors and their endogenous ligand repertoires are not easily established. Herein we apply a glycosidic linkage enrichment strategy to identify accumulating mannosylated plasma glycoproteins linked to the absence of the endocytic Mrc1 (MMR, CD206) mannose-binding lectin receptor. We find that Mrc1 controls the abundance of over two hundred circulating endogenous mannosylated proteins in healthy mice at steady state, including glycoproteins linked to inflammation, age-associated organ dysfunction, and elevated mortality in sepsis. Increased circulating Mrc1 levels previously ascribed to proteolysis during sepsis are proportional to mannosylated protein accumulation in the blood. Assignment of circulating mannosylated proteins to curated biological and pathogenic signaling pathways reveals significant overlap between Mrc1 dysfunction and human sepsis.
Suggested Citation
Damien Restagno & Mayank Saraswat & Peter V. Aziz & Kathryn Smith & Amanda J. Roberts & John Hintze & Jamey D. Marth, 2025.
"Mrc1 (MMR, CD206) controls the blood proteome in reducing inflammation, age-associated organ dysfunction and mortality in sepsis,"
Nature Communications, Nature, vol. 16(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61346-4
DOI: 10.1038/s41467-025-61346-4
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61346-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.