IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61325-9.html
   My bibliography  Save this article

Creating free standing covalent organic framework membranes by nanocrystal suturing in sol gel solutions

Author

Listed:
  • Yanpei Song

    (Oak Ridge National Laboratory)

  • Qingju Wang

    (University of Tennessee)

  • Errui Li

    (University of Tennessee)

  • Tao Wang

    (Oak Ridge National Laboratory)

  • Weitian Wang

    (University of Tennessee)

  • Jun Li

    (University of Tennessee)

  • Feng-Yuan Zhang

    (University of Tennessee)

  • Bo Li

    (Vanderbilt University)

  • De-en Jiang

    (Vanderbilt University)

  • Yangyang Wang

    (Oak Ridge National Laboratory)

  • Xiao Tong

    (Brookhaven National Laboratory)

  • Xiaoxiao Yu

    (China University of Petroleum)

  • Shannon M. Mahurin

    (Oak Ridge National Laboratory)

  • Zhenzhen Yang

    (Oak Ridge National Laboratory)

  • Sheng Dai

    (Oak Ridge National Laboratory
    University of Tennessee)

Abstract

The sol-gel synthesis represents a versatile platform to fabricate ceramic inorganic membranes. However, it is still a grand challenge to push the boundary of sol-gel chemistry towards high-quality organic membrane construction. Herein, a facile and controlled nanocrystal suturing strategy in sol-gel solutions is developed to afford highly crystalline and free-standing covalent organic framework membranes. The key chemistry design lies in deploying tiny threads (1 mol% dual-NH2-tail linear polymer) to efficiently suture the highly charged covalent organic framework nanocrystals stabilized and confined in sol-gel solutions, creating a continuous and intact membrane surface. A subsequent treatment heals the sutured covalent organic framework nanocrystals, yielding a free-standing membrane with high crystallinity and ordered pores. The structure evolution and role of the thread linker are elucidated via operando spectroscopy and microscopy. The as-afforded covalent organic framework membranes demonstrate attractive proton transport performance in high temperature and anhydrous fuel cell applications.

Suggested Citation

  • Yanpei Song & Qingju Wang & Errui Li & Tao Wang & Weitian Wang & Jun Li & Feng-Yuan Zhang & Bo Li & De-en Jiang & Yangyang Wang & Xiao Tong & Xiaoxiao Yu & Shannon M. Mahurin & Zhenzhen Yang & Sheng D, 2025. "Creating free standing covalent organic framework membranes by nanocrystal suturing in sol gel solutions," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61325-9
    DOI: 10.1038/s41467-025-61325-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61325-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61325-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liping Zheng & Zhengqing Zhang & Zhuozhi Lai & Shijie Yin & Weipeng Xian & Qing-Wei Meng & Zhifeng Dai & Yubing Xiong & Xiangju Meng & Shengqian Ma & Feng-Shou Xiao & Qi Sun, 2024. "Covalent organic framework membrane reactor for boosting catalytic performance," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Niaz Ali Khan & Runnan Zhang & Xiaoyao Wang & Li Cao & Chandra S. Azad & Chunyang Fan & Jinqiu Yuan & Mengying Long & Hong Wu & Mark. A. Olson & Zhongyi Jiang, 2022. "Assembling covalent organic framework membranes via phase switching for ultrafast molecular transport," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
    2. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    3. Lu, Guolong & Fan, Wenxuan & Lu, Dafeng & Zhao, Taotao & Wu, Qianqian & Liu, Mingxin & Liu, Zhenning, 2024. "Lung-inspired hybrid flow field to enhance PEMFC performance: A case of dual optimization by response surface and artificial intelligence," Applied Energy, Elsevier, vol. 355(C).
    4. Yunjie Yang & Minli Bai & Laisuo Su & Jizu Lv & Chengzhi Hu & Linsong Gao & Yang Li & Yubai Li & Yongchen Song, 2022. "One-Dimensional Numerical Simulation of Pt-Co Alloy Catalyst Aging for Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    5. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    6. Venkatesan, Suriya & Mitzel, Jens & Wegner, Karsten & Costa, Remi & Gazdzicki, Pawel & Friedrich, Kaspar Andreas, 2022. "Nanomaterials and films for polymer electrolyte membrane fuel cells and solid oxide cells by flame spray pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Wei Shen & Hongtao Su & Jianhua Gao & Lei Fan & Gang Zhang & Su Zhou, 2025. "A Multi-Objective Temperature Control Method for a Multi-Stack Fuel Cell System with Different Stacks Based on Model Predictive Control," Energies, MDPI, vol. 18(10), pages 1-17, May.
    8. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    9. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    10. Tao, Jianjian & Zhang, Yihan & Wei, Xuezhe & Jiang, Shangfeng & Dai, Haifeng, 2024. "Optimization of fast cold start strategy for PEM fuel cell stack," Applied Energy, Elsevier, vol. 362(C).
    11. Ding, Hongbing & Zhang, Panpan & Dong, Yuanyuan & Yang, Yan, 2024. "Optimization of hydrogen recirculation ejector for proton-exchange membrane fuel cells (PEMFC) systems considering non-equilibrium condensation," Renewable Energy, Elsevier, vol. 237(PC).
    12. Xiaoqing Cao & Hongyu Guo & Ying Han & Menggang Li & Changshuai Shang & Rui Zhao & Qizheng Huang & Ming Li & Qinghua Zhang & Fan Lv & Hao Tan & Zhengyi Qian & Mingchuan Luo & Shaojun Guo, 2025. "Sandwiching intermetallic Pt3Fe and ionomer with porous N-doped carbon layers for oxygen reduction reaction," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    13. Xian, Lei & Li, Zhengyan & Wang, Qiuyu & Lv, Shuangyu & Li, Shuchang & Yu, Yulong & Chen, Lei & Tao, Wen-Quan, 2025. "Atomic-scale insights into the structure-activity relationship between water transport and water phase structure in proton exchange membranes with deposited Pt particles," Applied Energy, Elsevier, vol. 381(C).
    14. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    15. Li, Xiang & Tang, Fumin & Wang, Qianqian & Li, Bing & Dai, Haifeng & Chang, Guofeng & Zhang, Cunman & Ming, Pingwen, 2023. "Effect of cathode catalyst layer on proton exchange membrane fuel cell performance: Considering the spatially variable distribution," Renewable Energy, Elsevier, vol. 212(C), pages 644-654.
    16. Hoang Nghia Vu & Dinh Hoang Trinh & Dat Truong Le Tri & Sangseok Yu, 2023. "Bypass Configurations of Membrane Humidifiers for Water Management in PEM Fuel Cells," Energies, MDPI, vol. 16(19), pages 1-17, October.
    17. Ye, Lingfeng & Qiu, Diankai & Peng, Linfa & Lai, Xinmin, 2024. "Conduction mechanism analysis and modeling of different gas diffusion layers for PEMFC to improve their bulk conductivities via microstructure design," Applied Energy, Elsevier, vol. 362(C).
    18. Zhang, Zhuo & Wang, Qi-yao & Bai, Fan & Chen, Li & Tao, Wen-quan, 2023. "Performance simulation and key parameters in-plane distribution analysis of a commercial-size PEMFC," Energy, Elsevier, vol. 263(PC).
    19. Minju Song & Yoonkyum Kim & Du San Baek & Ho Young Kim & Da Hwi Gu & Haiyang Li & Benjamin V. Cunning & Seong Eun Yang & Seung Hwae Heo & Seunghyun Lee & Minhyuk Kim & June Sung Lim & Hu Young Jeong &, 2023. "3D microprinting of inorganic porous materials by chemical linking-induced solidification of nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Chen, Huicui & Zhang, Ruirui & Xia, Zhifeng & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Experimental investigation on PEM fuel cell flooding mitigation under heavy loading condition," Applied Energy, Elsevier, vol. 349(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61325-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.