IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61297-w.html
   My bibliography  Save this article

The PARP inhibitor talazoparib synergizes with reovirus to induce cancer killing and tumour control in vivo in mouse models

Author

Listed:
  • Joan Kyula-Currie

    (The Institute of Cancer Research)

  • Victoria Roulstone

    (The Institute of Cancer Research)

  • James Wright

    (The Institute of Cancer Research)

  • Francesca Butera

    (The Institute of Cancer Research)

  • Arnaud Legrand

    (The Institute of Cancer Research)

  • Richard Elliott

    (The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research)

  • Martin McLaughlin

    (The Institute of Cancer Research)

  • Galabina Bozhanova

    (The Institute of Cancer Research)

  • Dragomir Krastev

    (The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research)

  • Stephen Pettitt

    (The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research)

  • Tencho Tenev

    (The Institute of Cancer Research)

  • Magnus Dillon

    (The Institute of Cancer Research)

  • Shane Foo

    (The Institute of Cancer Research)

  • Emmanuel C. Patin

    (The Institute of Cancer Research)

  • Victoria Jennings

    (The Institute of Cancer Research)

  • Charleen Chan Wah Hak

    (The Institute of Cancer Research)

  • Elizabeth Appleton

    (The Institute of Cancer Research)

  • Amarin Wongariyapak

    (The Institute of Cancer Research)

  • Malin Pedersen

    (The Institute of Cancer Research)

  • Antonio Rullan

    (The Institute of Cancer Research)

  • Jyoti Choudhary

    (The Institute of Cancer Research)

  • Chris Bakal

    (The Institute of Cancer Research)

  • Pascal Meier

    (The Institute of Cancer Research)

  • Christopher J. Lord

    (The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research)

  • Alan Melcher

    (The Institute of Cancer Research)

  • Kevin J. Harrington

    (The Institute of Cancer Research)

Abstract

Reovirus type 3 Dearing (RT3D) is an oncolytic, double-stranded RNA virus. To identify potential RT3D drug-viral sensitizer, here we use a high-throughput screen of therapeutic agents and find a PARP-1 inhibitor, talazoparib, as a top hit. RT3D interacts with retinoic acid-induced gene-1 (RIG-I) and activates PARP-1, with consequent PARylation of components of the extrinsic apoptosis pathway. Pharmacological or genetic inhibition of PARP-1 abrogates this PARylation and enhances extrinsic apoptosis, NF-kB signalling and pro-inflammatory cell death. Interaction between PARP-1 and RIG-I induced by treating RT3D-infected cells with talazoparib activates downstream IFN-β and TNF/TRAIL production to amplify the therapeutic effect through positive feedback. Furthermore, the effect of RT3D-talazoparib combination is phenocopied by non-viral ds-RNA therapy and RIG-I agonism. In vivo, mouse tumour model results show that RT3D/talazoparib combination regimen induces complete control of inoculated tumour as well as protection from subsequent tumour rechallenge with the, with accompanied innate and adaptive immune activation.

Suggested Citation

  • Joan Kyula-Currie & Victoria Roulstone & James Wright & Francesca Butera & Arnaud Legrand & Richard Elliott & Martin McLaughlin & Galabina Bozhanova & Dragomir Krastev & Stephen Pettitt & Tencho Tenev, 2025. "The PARP inhibitor talazoparib synergizes with reovirus to induce cancer killing and tumour control in vivo in mouse models," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61297-w
    DOI: 10.1038/s41467-025-61297-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61297-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61297-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stephen J. Pettitt & Dragomir B. Krastev & Inger Brandsma & Amy Dréan & Feifei Song & Radoslav Aleksandrov & Maria I. Harrell & Malini Menon & Rachel Brough & James Campbell & Jessica Frankum & Michae, 2018. "Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    2. Hannah Farmer & Nuala McCabe & Christopher J. Lord & Andrew N. J. Tutt & Damian A. Johnson & Tobias B. Richardson & Manuela Santarosa & Krystyna J. Dillon & Ian Hickson & Charlotte Knights & Niall M. , 2005. "Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy," Nature, Nature, vol. 434(7035), pages 917-921, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Cong & Nathan MacGilvary & Silviana Lee & Shannon G. MacLeod & Jennifer Calvo & Min Peng & Arne Nedergaard Kousholt & Tovah A. Day & Sharon B. Cantor, 2024. "FANCJ promotes PARP1 activity during DNA replication that is essential in BRCA1 deficient cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Jean E. Abraham & Lenka Oplustil O’Connor & Louise Grybowicz & Karen Pinilla Alba & Alimu Dayimu & Nikolaos Demiris & Caron Harvey & Lynsey M. Drewett & Rebecca Lucey & Alexander Fulton & Anne N. Robe, 2025. "Neoadjuvant PARP inhibitor scheduling in BRCA1 and BRCA2 related breast cancer: PARTNER, a randomized phase II/III trial," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Diego Dibitetto & Martin Liptay & Francesca Vivalda & Hülya Dogan & Ewa Gogola & Martín González Fernández & Alexandra Duarte & Jonas A. Schmid & Morgane Decollogny & Paola Francica & Sara Przetocka &, 2024. "H2AX promotes replication fork degradation and chemosensitivity in BRCA-deficient tumours," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Neil J. Rzechorzek & Simone Kunzelmann & Andrew G. Purkiss & Mariana Silva Dos Santos & James I. MacRae & Ian A. Taylor & Kasper Fugger & Stephen C. West, 2023. "Mechanism of substrate hydrolysis by the human nucleotide pool sanitiser DNPH1," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Susan Kilgas & Aleem Syed & Patrick Toolan-Kerr & Michelle L. Swift & Shrabasti Roychoudhury & Aniruddha Sarkar & Sarah Wilkins & Mikayla Quigley & Anna R. Poetsch & Maria Victoria Botuyan & Gaofeng C, 2024. "NEAT1 modulates the TIRR/53BP1 complex to maintain genome integrity," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Heathcliff Dorado García & Fabian Pusch & Yi Bei & Jennifer Stebut & Glorymar Ibáñez & Kristina Guillan & Koshi Imami & Dennis Gürgen & Jana Rolff & Konstantin Helmsauer & Stephanie Meyer-Liesener & N, 2022. "Therapeutic targeting of ATR in alveolar rhabdomyosarcoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Sundarraj Jayakumar & Manthan Patel & Fanny Boulet & Hadicha Aziz & Greg N. Brooke & Hemanth Tummala & Madapura M. Pradeepa, 2024. "PSIP1/LEDGF reduces R-loops at transcription sites to maintain genome integrity," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Zizhi Tang & Ming Zeng & Xiaojun Wang & Chang Guo & Peng Yue & Xiaohu Zhang & Huiqiang Lou & Jun Chen & Dezhi Mu & Daochun Kong & Antony M. Carr & Cong Liu, 2022. "Synthetic lethality between TP53 and ENDOD1," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Samuel D. Chauvin & Shoichiro Ando & Joe A. Holley & Atsushi Sugie & Fang R. Zhao & Subhajit Poddar & Rei Kato & Cathrine A. Miner & Yohei Nitta & Siddharth R. Krishnamurthy & Rie Saito & Yue Ning & Y, 2024. "Inherited C-terminal TREX1 variants disrupt homology-directed repair to cause senescence and DNA damage phenotypes in Drosophila, mice, and humans," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    10. Arindam Datta & Kajal Biswas & Joshua A. Sommers & Haley Thompson & Sanket Awate & Claudia M. Nicolae & Tanay Thakar & George-Lucian Moldovan & Robert H. Shoemaker & Shyam K. Sharan & Robert M. Brosh, 2021. "WRN helicase safeguards deprotected replication forks in BRCA2-mutated cancer cells," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    11. Meng Wang & Satoshi Fukushima & Yi-Shuan Sheen & Egle Ramelyte & Noel Cruz-Pacheco & Chenxu Shi & Shanshan Liu & Ishani Banik & Jamie D. Aquino & Martin Sangueza Acosta & Mitchell Levesque & Reinhard , 2024. "The genetic evolution of acral melanoma," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Jun Dai & Shuyu Zheng & Matías M. Falco & Jie Bao & Johanna Eriksson & Sanna Pikkusaari & Sofia Forstén & Jing Jiang & Wenyu Wang & Luping Gao & Fernando Perez-Villatoro & Olli Dufva & Khalid Saeed & , 2024. "Tracing back primed resistance in cancer via sister cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Youngho Kwon & Heike Rösner & Weixing Zhao & Platon Selemenakis & Zhuoling He & Ajinkya S. Kawale & Jeffrey N. Katz & Cody M. Rogers & Francisco E. Neal & Aida Badamchi Shabestari & Valdemaras Petrosi, 2023. "DNA binding and RAD51 engagement by the BRCA2 C-terminus orchestrate DNA repair and replication fork preservation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Scisung Chung & Mi-Sun Kang & Dauren S. Alimbetov & Gil-Im Mun & Na-Oh Yunn & Yunjin Kim & Byung-Gyu Kim & Minwoo Wie & Eun A. Lee & Jae Sun Ra & Jung-Min Oh & Donghyun Lee & Keondo Lee & Jihan Kim & , 2022. "Regulation of BRCA1 stability through the tandem UBX domains of isoleucyl-tRNA synthetase 1," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Yonina R. Murciano-Goroff & Alison M. Schram & Ezra Y. Rosen & Helen Won & Yixiao Gong & Anne Marie Noronha & Yelena Y. Janjigian & Zsofia K. Stadler & Jason C. Chang & Soo-Ryum Yang & Diana Mandelker, 2022. "Reversion mutations in germline BRCA1/2-mutant tumors reveal a BRCA-mediated phenotype in non-canonical histologies," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Sumin Feng & Sai Ma & Kejiao Li & Shengxian Gao & Shaokai Ning & Jinfeng Shang & Ruiyuan Guo & Yingying Chen & Britny Blumenfeld & Itamar Simon & Qing Li & Rong Guo & Dongyi Xu, 2022. "RIF1-ASF1-mediated high-order chromatin structure safeguards genome integrity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Ramona N. Moro & Uddipta Biswas & Suhas S. Kharat & Filip D. Duzanic & Prosun Das & Maria Stavrou & Maria C. Raso & Raimundo Freire & Arnab Ray Chaudhuri & Shyam K. Sharan & Lorenza Penengo, 2023. "Interferon restores replication fork stability and cell viability in BRCA-defective cells via ISG15," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Wei Liu & Hongchao Cao & Jing Wang & Areeg Elmusrati & Bing Han & Wei Chen & Ping Zhou & Xiyao Li & Stephen Keysar & Antonio Jimeno & Cun-Yu Wang, 2024. "Histone-methyltransferase KMT2D deficiency impairs the Fanconi anemia/BRCA pathway upon glycolytic inhibition in squamous cell carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    19. Domagoj Vugic & Isaac Dumoulin & Charlotte Martin & Anna Minello & Lucia Alvaro-Aranda & Jesus Gomez-Escudero & Rady Chaaban & Rana Lebdy & Catharina Nicolai & Virginie Boucherit & Cyril Ribeyre & Ang, 2023. "Replication gap suppression depends on the double-strand DNA binding activity of BRCA2," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    20. Martina Minoli & Thomas Cantore & Daniel Hanhart & Mirjam Kiener & Tarcisio Fedrizzi & Federico La Manna & Sofia Karkampouna & Panagiotis Chouvardas & Vera Genitsch & Antonio Rodriguez-Calero & Eva Co, 2023. "Bladder cancer organoids as a functional system to model different disease stages and therapy response," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61297-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.