IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61258-3.html
   My bibliography  Save this article

Pol θ-mediated end-joining uses microhomologies containing mismatches

Author

Listed:
  • Yuzhen Li

    (MD Anderson Cancer Center)

  • Ngoc K. Dang

    (MD Anderson Cancer Center)

  • Wei He

    (MD Anderson Cancer Center)

  • Mark Returan

    (MD Anderson Cancer Center)

  • Denisse Carvajal-Maldonado

    (MD Anderson Cancer Center)

  • Adele T. Guerin

    (MD Anderson Cancer Center)

  • Han Xu

    (MD Anderson Cancer Center)

  • Bin Liu

    (MD Anderson Cancer Center)

  • Richard D. Wood

    (MD Anderson Cancer Center)

Abstract

DNA polymerase theta (Pol θ) initiates repair of DNA double-strand breaks by pairing single strands at short “microhomologies”. It is important to understand microhomology selection, as some cancer cells rely on Pol θ for survival. Here, we investigate end-joining by purified human Pol θ, employing DNA sequencing of products generated from oligonucleotide libraries having diverse 3′ ends. Pol θ overwhelmingly selects short internal microhomologies found within 15 nucleotides of the terminus of single-stranded DNAs, restricting deletion size during end-joining. Significantly, we find that the selected microhomologies are usually interrupted by mismatches and that base pairing within 6 nucleotides of the 3′ end is important for determining microhomology choice. Bidirectional synthesis is not necessary to initiate end-joining. The preference for mismatched microhomologies suggests a revision of the definition of microhomology to account for the unique properties of Pol θ. This could advance the analysis of mutations in cancer genomes.

Suggested Citation

  • Yuzhen Li & Ngoc K. Dang & Wei He & Mark Returan & Denisse Carvajal-Maldonado & Adele T. Guerin & Han Xu & Bin Liu & Richard D. Wood, 2025. "Pol θ-mediated end-joining uses microhomologies containing mismatches," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61258-3
    DOI: 10.1038/s41467-025-61258-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61258-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61258-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ludmil B. Alexandrov & Jaegil Kim & Nicholas J. Haradhvala & Mi Ni Huang & Alvin Wei Tian Ng & Yang Wu & Arnoud Boot & Kyle R. Covington & Dmitry A. Gordenin & Erik N. Bergstrom & S. M. Ashiqul Islam , 2020. "The repertoire of mutational signatures in human cancer," Nature, Nature, vol. 578(7793), pages 94-101, February.
    2. Susanna Stroik & Juan Carvajal-Garcia & Dipika Gupta & Alyssa Edwards & Adam Luthman & David W. Wyatt & Rachel L. Dannenberg & Wanjuan Feng & Thomas A. Kunkel & Gaorav P. Gupta & Mark Hedglin & Richar, 2023. "Stepwise requirements for polymerases δ and θ in theta-mediated end joining," Nature, Nature, vol. 623(7988), pages 836-841, November.
    3. Pedro A. Mateos-Gomez & Fade Gong & Nidhi Nair & Kyle M. Miller & Eros Lazzerini-Denchi & Agnel Sfeir, 2015. "Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination," Nature, Nature, vol. 518(7538), pages 254-257, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuxuan Li & Leora M. Maksoud & Yang Gao, 2025. "Structural basis of error-prone DNA synthesis by DNA polymerase θ," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    2. Teresa Maria Rosaria Noviello & Anna Maria Giacomo & Francesca Pia Caruso & Alessia Covre & Roberta Mortarini & Giovanni Scala & Maria Claudia Costa & Sandra Coral & Wolf H. Fridman & Catherine Sautès, 2023. "Guadecitabine plus ipilimumab in unresectable melanoma: five-year follow-up and integrated multi-omic analysis in the phase 1b NIBIT-M4 trial," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Oriol Pich & Iker Reyes-Salazar & Abel Gonzalez-Perez & Nuria Lopez-Bigas, 2022. "Discovering the drivers of clonal hematopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Yoonhee Nam & Karen Gomez & Jean-Baptiste Reynier & Cole Khamnei & Michael Aitken & Vivian Zheng & Tenzin Lhakhang & Milena Casula & Giuseppe Palmieri & Antonio Cossu & Arnold Levine & Enrico Tiacci &, 2025. "Genomic landscape of virus-associated cancers," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    5. Taichi Igarashi & Marianne Mazevet & Takaaki Yasuhara & Kimiyoshi Yano & Akifumi Mochizuki & Makoto Nishino & Tatsuya Yoshida & Yukihiro Yoshida & Nobuhiko Takamatsu & Akihide Yoshimi & Kouya Shiraish, 2023. "An ATR-PrimPol pathway confers tolerance to oncogenic KRAS-induced and heterochromatin-associated replication stress," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    6. Jennifer J. Knox & Gun Ho Jang & Robert C. Grant & Amy Zhang & Lucy Ma & Elena Elimova & Raymond Jang & Malcolm Moore & James Biagi & Mustapha Tehfe & Ravi Ramjeesingh & Erica S. Tsang & Spring Holter, 2025. "Whole genome and transcriptome profiling in advanced pancreatic cancer patients on the COMPASS trial," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    7. Noah Sasa & Toshihiro Kishikawa & Masashi Mori & Rie Ito & Yumie Mizoro & Masami Suzuki & Hirotaka Eguchi & Hidenori Tanaka & Takahito Fukusumi & Motoyuki Suzuki & Yukinori Takenaka & Keisuke Nimura &, 2025. "Intratumor heterogeneity of HPV integration in HPV-associated head and neck cancer," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    8. Pierre Murat & Guillaume Guilbaud & Julian E. Sale, 2024. "DNA replication initiation drives focal mutagenesis and rearrangements in human cancers," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Nikolaos Parisis & Pablo D. Dans & Muhammad Jbara & Balveer Singh & Diane Schausi-Tiffoche & Diego Molina-Serrano & Isabelle Brun-Heath & Denisa Hendrychová & Suman Kumar Maity & Diana Buitrago & Rafa, 2023. "Histone H3 serine-57 is a CHK1 substrate whose phosphorylation affects DNA repair," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    10. Eline J. M. Bertrums & Jurrian K. Kanter & Lucca L. M. Derks & Mark Verheul & Laurianne Trabut & Markus J. Roosmalen & Henrik Hasle & Evangelia Antoniou & Dirk Reinhardt & Michael N. Dworzak & Nora Mü, 2024. "Selective pressures of platinum compounds shape the evolution of therapy-related myeloid neoplasms," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Benjamin A. Nacev & Francisco Sanchez-Vega & Shaleigh A. Smith & Cristina R. Antonescu & Evan Rosenbaum & Hongyu Shi & Cerise Tang & Nicholas D. Socci & Satshil Rana & Rodrigo Gularte-Mérida & Ahmet Z, 2022. "Clinical sequencing of soft tissue and bone sarcomas delineates diverse genomic landscapes and potential therapeutic targets," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Dillon S. McBride & Sofya K. Garushyants & John Franks & Andrew F. Magee & Steven H. Overend & Devra Huey & Amanda M. Williams & Seth A. Faith & Ahmed Kandeil & Sanja Trifkovic & Lance Miller & Trusha, 2023. "Accelerated evolution of SARS-CoV-2 in free-ranging white-tailed deer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Guidantonio Malagoli Tagliazucchi & Anna J. Wiecek & Eloise Withnell & Maria Secrier, 2023. "Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    14. Ryan N. Ptashkin & Mark D. Ewalt & Gowtham Jayakumaran & Iwona Kiecka & Anita S. Bowman & JinJuan Yao & Jacklyn Casanova & Yun-Te David Lin & Kseniya Petrova-Drus & Abhinita S. Mohanty & Ruben Bacares, 2023. "Enhanced clinical assessment of hematologic malignancies through routine paired tumor and normal sequencing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Erik Elias & Arman Ardalan & Markus Lindberg & Susanne E. Reinsbach & Andreas Muth & Ola Nilsson & Yvonne Arvidsson & Erik Larsson, 2021. "Independent somatic evolution underlies clustered neuroendocrine tumors in the human small intestine," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    16. Luan Nguyen & Arne Hoeck & Edwin Cuppen, 2022. "Machine learning-based tissue of origin classification for cancer of unknown primary diagnostics using genome-wide mutation features," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Yoshitaka Sakamoto & Shuhei Miyake & Miho Oka & Akinori Kanai & Yosuke Kawai & Satoi Nagasawa & Yuichi Shiraishi & Katsushi Tokunaga & Takashi Kohno & Masahide Seki & Yutaka Suzuki & Ayako Suzuki, 2022. "Phasing analysis of lung cancer genomes using a long read sequencer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    18. Stefan Harjes & Harikrishnan M. Kurup & Amanda E. Rieffer & Maitsetseg Bayarjargal & Jana Filitcheva & Yongdong Su & Tracy K. Hale & Vyacheslav V. Filichev & Elena Harjes & Reuben S. Harris & Geoffrey, 2023. "Structure-guided inhibition of the cancer DNA-mutating enzyme APOBEC3A," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Zhenhua Li & Huanbin Zhao & Wenjian Yang & Maud Maillard & Satoshi Yoshimura & Yu-Chih Hsiao & Xin Huang & Yoshihiro Gocho & Lauren Rowland & Anthony Brown & Landon Choi & Kristine R. Crews & Charles , 2025. "Molecular and pharmacological heterogeneity of ETV6::RUNX1 acute lymphoblastic leukemia," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    20. Minghao Li & Zicheng Zhang & Qianrong Wang & Yan Yi & Baosheng Li, 2022. "Integrated cohort of esophageal squamous cell cancer reveals genomic features underlying clinical characteristics," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61258-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.