IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61246-7.html
   My bibliography  Save this article

An explicit integration approach for predicting the microstructures of multicomponent alloys

Author

Listed:
  • Takumi Morino

    (Yokohama National University)

  • Machiko Ode

    (National Institute for Materials Science)

  • Shoichi Hirosawa

    (Yokohama National University)

Abstract

Predicting the complex microstructures of practical materials has been a longstanding goal since Gibbs’s pioneering work on predictions for equilibrium of heterogeneous systems. The most promising approach for achieving this goal is integrating Calculation of Phase Diagrams (CALPHAD) with phase-field models. This CALPHAD-coupled phase-field model requires two Gibbs free energy minimisation conditions: equal diffusion potential and internal equilibrium, both grounded in the second law of thermodynamics. However, as implicit functions, these minimisation conditions suffer from the curse of dimensionality when applied to multicomponent systems, which imposes significant constraints on simulation capabilities. Here we propose an approach that incorporates the equal diffusion potential and internal equilibrium conditions into a single explicit function in phase-field equations. In simulations across various practical materials, our model achieved equal diffusion and internal equilibrium conditions. Furthermore, it overcame dimensionality limitations, enabling computations for systems with up to 20 components. Thus, the proposed approach proves highly versatile and efficient, supporting a wide range of practical applications.

Suggested Citation

  • Takumi Morino & Machiko Ode & Shoichi Hirosawa, 2025. "An explicit integration approach for predicting the microstructures of multicomponent alloys," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61246-7
    DOI: 10.1038/s41467-025-61246-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61246-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61246-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61246-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.