IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61238-7.html
   My bibliography  Save this article

Topological Dirac-vortex modes in a three-dimensional photonic topological insulator

Author

Listed:
  • Bei Yan

    (Southern University of Science and Technology
    Southern University of Science and Technology
    Wuhan University of Science and Technology)

  • Yingfeng Qi

    (Southern University of Science and Technology
    Southern University of Science and Technology)

  • Ziyao Wang

    (Southern University of Science and Technology
    Southern University of Science and Technology)

  • Yan Meng

    (Dongguan University of Technology)

  • Linyun Yang

    (Chongqing University)

  • Zhen-Xiao Zhu

    (Southern University of Science and Technology
    Southern University of Science and Technology)

  • Jing-Ming Chen

    (Southern University of Science and Technology
    Southern University of Science and Technology)

  • Yuxin Zhong

    (Southern University of Science and Technology
    Southern University of Science and Technology)

  • Min-Qi Cheng

    (Southern University of Science and Technology
    Southern University of Science and Technology)

  • Xiang Xi

    (Dongguan University of Technology)

  • Zhen Gao

    (Southern University of Science and Technology
    Southern University of Science and Technology
    Southern University of Science and Technology)

Abstract

Recently, topological Dirac-vortex modes in Kekulé-distorted photonic lattices have attracted broad interest and exhibited promising applications in robust photonic devices such as topological cavities, lasers, and fibers. However, due to the vectorial nature of electromagnetic waves that results in complicated band dispersions and fails the tight-binding model predictions, it is challenging to construct three-dimensional (3D) topological photonic structures with Kekulé distortion, and the photonic topological Dirac-vortex modes have thus far been limited to two-dimensional (2D) systems. Here, by directly mapping a 3D Kekulé-distorted tight-binding model in a 3D tight-binding-like photonic crystal exhibiting scalar-wave-like band structures, we theoretically propose and experimentally demonstrate topological Dirac-vortex modes in a 3D photonic topological insulator for the first time. Using microwave near-field measurements, we directly observe robust photonic topological Dirac-vortex modes bound to and propagating along a one-dimensional (1D) Dirac-vortex line defect, matching well with the tight-binding and simulation results. Our work offers an ideal platform to map tight-binding models in 3D topological photonic crystals directly and opens a new avenue for exploiting topological lattice defects to manipulate light in 3D space.

Suggested Citation

  • Bei Yan & Yingfeng Qi & Ziyao Wang & Yan Meng & Linyun Yang & Zhen-Xiao Zhu & Jing-Ming Chen & Yuxin Zhong & Min-Qi Cheng & Xiang Xi & Zhen Gao, 2025. "Topological Dirac-vortex modes in a three-dimensional photonic topological insulator," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61238-7
    DOI: 10.1038/s41467-025-61238-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61238-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61238-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jingwen Ma & Ding Jia & Li Zhang & Yi-jun Guan & Yong Ge & Hong-xiang Sun & Shou-qi Yuan & Hongsheng Chen & Yihao Yang & Xiang Zhang, 2024. "Observation of vortex-string chiral modes in metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Minkyung Kim & Zihao Wang & Yihao Yang & Hau Tian Teo & Junsuk Rho & Baile Zhang, 2022. "Three-dimensional photonic topological insulator without spin–orbit coupling," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Eran Lustig & Lukas J. Maczewsky & Julius Beck & Tobias Biesenthal & Matthias Heinrich & Zhaoju Yang & Yonatan Plotnik & Alexander Szameit & Mordechai Segev, 2022. "Photonic topological insulator induced by a dislocation in three dimensions," Nature, Nature, vol. 609(7929), pages 931-935, September.
    4. Junhong Liu & Yunfei Xu & Rusong Li & Yongqiang Sun & Kaiyao Xin & Jinchuan Zhang & Quanyong Lu & Ning Zhuo & Junqi Liu & Lijun Wang & Fengmin Cheng & Shuman Liu & Fengqi Liu & Shenqiang Zhai, 2024. "High-power electrically pumped terahertz topological laser based on a surface metallic Dirac-vortex cavity," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Yang Liu & Shuwai Leung & Fei-Fei Li & Zhi-Kang Lin & Xiufeng Tao & Yin Poo & Jian-Hua Jiang, 2021. "Bulk–disclination correspondence in topological crystalline insulators," Nature, Nature, vol. 589(7842), pages 381-385, January.
    6. Qiang Wang & Yong Ge & Hong-xiang Sun & Haoran Xue & Ding Jia & Yi-jun Guan & Shou-qi Yuan & Baile Zhang & Y. D. Chong, 2021. "Vortex states in an acoustic Weyl crystal with a topological lattice defect," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Liping Ye & Chunyin Qiu & Meng Xiao & Tianzi Li & Juan Du & Manzhu Ke & Zhengyou Liu, 2022. "Topological dislocation modes in three-dimensional acoustic topological insulators," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Fei-Fei Li & Hai-Xiao Wang & Zhan Xiong & Qun Lou & Ping Chen & Rui-Xin Wu & Yin Poo & Jian-Hua Jiang & Sajeev John, 2018. "Topological light-trapping on a dislocation," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    9. Eran Lustig & Steffen Weimann & Yonatan Plotnik & Yaakov Lumer & Miguel A. Bandres & Alexander Szameit & Mordechai Segev, 2019. "Photonic topological insulator in synthetic dimensions," Nature, Nature, vol. 567(7748), pages 356-360, March.
    10. Song Han & Yunda Chua & Yongquan Zeng & Bofeng Zhu & Chongwu Wang & Bo Qiang & Yuhao Jin & Qian Wang & Lianhe Li & Alexander Giles Davies & Edmund Harold Linfield & Yidong Chong & Baile Zhang & Qi Jie, 2023. "Photonic Majorana quantum cascade laser with polarization-winding emission," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Ziyao Wang & Yan Meng & Bei Yan & Dong Zhao & Linyun Yang & Jingming Chen & Minqi Cheng & Tao Xiao & Perry Ping Shum & Gui-Geng Liu & Yihao Yang & Hongsheng Chen & Xiang Xi & Zhen-Xiao Zhu & Biye Xie , 2025. "Realization of a three-dimensional photonic higher-order topological insulator," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    12. Yihao Yang & Zhen Gao & Haoran Xue & Li Zhang & Mengjia He & Zhaoju Yang & Ranjan Singh & Yidong Chong & Baile Zhang & Hongsheng Chen, 2019. "Realization of a three-dimensional photonic topological insulator," Nature, Nature, vol. 565(7741), pages 622-626, January.
    13. Hengbin Cheng & Jingyu Yang & Zhong Wang & Ling Lu, 2024. "Observation of monopole topological mode," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziyao Wang & Yan Meng & Bei Yan & Dong Zhao & Linyun Yang & Jingming Chen & Minqi Cheng & Tao Xiao & Perry Ping Shum & Gui-Geng Liu & Yihao Yang & Hongsheng Chen & Xiang Xi & Zhen-Xiao Zhu & Biye Xie , 2025. "Realization of a three-dimensional photonic higher-order topological insulator," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    2. Jia-Hui Zhang & Feng Mei & Yi Li & Ching Hua Lee & Jie Ma & Liantuan Xiao & Suotang Jia, 2025. "Observation of higher-order time-dislocation topological modes," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    3. Feng Jin & Subhaskar Mandal & Xutong Wang & Baile Zhang & Rui Su, 2025. "Perovskite topological exciton-polariton disclination laser at room temperature," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    4. Danwei Liao & Jingyi Zhang & Shuochen Wang & Zhiwang Zhang & Alberto Cortijo & María A. H. Vozmediano & Francisco Guinea & Ying Cheng & Xiaojun Liu & Johan Christensen, 2024. "Visualizing the topological pentagon states of a giant C540 metamaterial," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Ren, Boquan & Kartashov, Yaroslav V. & Wang, Hongguang & Li, Yongdong & Zhang, Yiqi, 2023. "Floquet topological insulators with hybrid edges," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    6. Junhong Liu & Yunfei Xu & Rusong Li & Yongqiang Sun & Kaiyao Xin & Jinchuan Zhang & Quanyong Lu & Ning Zhuo & Junqi Liu & Lijun Wang & Fengmin Cheng & Shuman Liu & Fengqi Liu & Shenqiang Zhai, 2024. "High-power electrically pumped terahertz topological laser based on a surface metallic Dirac-vortex cavity," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Sasha S. Yamada & Tianhe Li & Mao Lin & Christopher W. Peterson & Taylor L. Hughes & Gaurav Bahl, 2022. "Bound states at partial dislocation defects in multipole higher-order topological insulators," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Jingwen Ma & Ding Jia & Li Zhang & Yi-jun Guan & Yong Ge & Hong-xiang Sun & Shou-qi Yuan & Hongsheng Chen & Yihao Yang & Xiang Zhang, 2024. "Observation of vortex-string chiral modes in metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Yuze Hu & Mingyu Tong & Tian Jiang & Jian-Hua Jiang & Hongsheng Chen & Yihao Yang, 2024. "Observation of two-dimensional time-reversal broken non-Abelian topological states," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Weitao Yuan & Chenwen Yang & Danmei Zhang & Yang Long & Yongdong Pan & Zheng Zhong & Hong Chen & Jinfeng Zhao & Jie Ren, 2021. "Observation of elastic spin with chiral meta-sources," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    11. Lei Huang & Lu He & Weixuan Zhang & Huizhen Zhang & Dongning Liu & Xue Feng & Fang Liu & Kaiyu Cui & Yidong Huang & Wei Zhang & Xiangdong Zhang, 2024. "Hyperbolic photonic topological insulators," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Hanqing Zhao & Boris A. Malomed & Ivan I. Smalyukh, 2023. "Topological solitonic macromolecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Jing Yang & Yuanzhen Li & Yumeng Yang & Xinrong Xie & Zijian Zhang & Jiale Yuan & Han Cai & Da-Wei Wang & Fei Gao, 2024. "Realization of all-band-flat photonic lattices," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    14. Kartashov, Yaroslav V., 2025. "Quadratic solitons in higher-order topological insulators," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    15. Guoqiang Xu & Xue Zhou & Shuihua Yang & Jing Wu & Cheng-Wei Qiu, 2023. "Observation of bulk quadrupole in topological heat transport," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Yaowen Hu & Mengjie Yu & Neil Sinclair & Di Zhu & Rebecca Cheng & Cheng Wang & Marko Lončar, 2022. "Mirror-induced reflection in the frequency domain," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Minkyung Kim & Zihao Wang & Yihao Yang & Hau Tian Teo & Junsuk Rho & Baile Zhang, 2022. "Three-dimensional photonic topological insulator without spin–orbit coupling," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    18. Lun-Hui Hu & Rui-Xing Zhang, 2024. "Dislocation Majorana bound states in iron-based superconductors," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Xiaoxiao Wu & Haiyan Fan & Tuo Liu & Zhongming Gu & Ruo-Yang Zhang & Jie Zhu & Xiang Zhang, 2022. "Topological phononics arising from fluid-solid interactions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    20. Kartashov, Yaroslav V., 2024. "Solitons in higher-order topological insulator created by unit cell twisting," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61238-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.