Author
Listed:
- Bibek R. Karki
(University of Cincinnati College of Medicine)
- Austin C. MacMillan
(University of Cincinnati College of Medicine)
- Sara Vicente-Muñoz
(Cincinnati Children’s Hospital Medical Center)
- Kenneth D. Greis
(University of Cincinnati College of Medicine)
- Lindsey E. Romick
(Cincinnati Children’s Hospital Medical Center)
- John T. Cunningham
(University of Cincinnati College of Medicine)
Abstract
The phosphoribosyl pyrophosphate synthetase (PRPS) enzyme catalyzes a chokepoint reaction in nucleotide production, making it essential for life. Here, we show that the presence of multiple PRPS-encoding genes is a hallmark trait of eukaryotes, and we find that gains or losses of paralogs are associated with major branching events in the eukaryotic tree. We pinpoint the evolutionary origins and define the individual roles for each of the mammalian PRPS paralogs, which we demonstrate work together as a heterogeneous multicomponent complex. Employing isogenic cells representing all viable individual or combinatorial assembly states, we dissect the basic organizational principles of the enzyme complex and characterize the emergent properties responsible for paralog specialization, including new modes of regulation that govern complex assembly and activity in vivo. Collectively, our study demonstrates how evolution has transformed a single PRPS enzyme into a biochemical complex endowed with novel functional and regulatory features that fine-tune mammalian metabolism.
Suggested Citation
Bibek R. Karki & Austin C. MacMillan & Sara Vicente-Muñoz & Kenneth D. Greis & Lindsey E. Romick & John T. Cunningham, 2025.
"The role of gene duplication and paralog specialisation in the evolution of the mammalian PRPS complex,"
Nature Communications, Nature, vol. 16(1), pages 1-18, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61216-z
DOI: 10.1038/s41467-025-61216-z
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61216-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.