IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61003-w.html
   My bibliography  Save this article

Genetically encoded affinity reagents are a toolkit for visualizing and manipulating endogenous protein function in vivo

Author

Listed:
  • Curtis W. Boswell

    (Yale University School of Medicine)

  • Caroline Hoppe

    (Yale University School of Medicine)

  • Alice Sherrard

    (Yale University School of Medicine)

  • Liyun Miao

    (Yale University School of Medicine)

  • Mina L. Kojima

    (Yale University School of Medicine)

  • Pieter Martino

    (Yale University School of Medicine
    Yale University School of Medicine)

  • Ning Zhao

    (University of Colorado-Anschutz Medical Campus)

  • Timothy J. Stasevich

    (Colorado State University
    Tokyo Institute of Technology)

  • Stefania Nicoli

    (Yale University School of Medicine
    Yale University School of Medicine)

  • Antonio J. Giraldez

    (Yale University School of Medicine
    Yale University School of Medicine
    Yale University School of Medicine)

Abstract

Probing endogenous protein localization and function in vivo remains challenging due to laborious gene targeting and monofunctional alleles. Here, we develop a multifunctional and adaptable toolkit based on genetically encoded affinity reagents (GEARs). GEARs use small epitopes recognized by nanobodies and single chain variable fragments to enable fluorescent visualization, manipulation and degradation of protein targets in vivo. Furthermore, we outline a CRISPR/Cas9-based epitope tagging pipeline to demonstrate its utility for producing knock-in alleles that have broad applications. We use GEARs to examine the native behavior of the pioneer transcription factor Nanog and the planar cell polarity protein Vangl2 during early zebrafish development. Together, this toolkit provides a versatile system for probing and perturbing endogenous protein function while circumventing challenges associated with conventional gene targeting and is broadly available to the model organism community.

Suggested Citation

  • Curtis W. Boswell & Caroline Hoppe & Alice Sherrard & Liyun Miao & Mina L. Kojima & Pieter Martino & Ning Zhao & Timothy J. Stasevich & Stefania Nicoli & Antonio J. Giraldez, 2025. "Genetically encoded affinity reagents are a toolkit for visualizing and manipulating endogenous protein function in vivo," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61003-w
    DOI: 10.1038/s41467-025-61003-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61003-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61003-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maria Jussila & Curtis W. Boswell & Nigel W. Griffiths & Patrick G. Pumputis & Brian Ciruna, 2022. "Live imaging and conditional disruption of native PCP activity using endogenously tagged zebrafish sfGFP-Vangl2," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Ning Zhao & Kouta Kamijo & Philip D. Fox & Haruka Oda & Tatsuya Morisaki & Yuko Sato & Hiroshi Kimura & Timothy J. Stasevich, 2019. "A genetically encoded probe for imaging nascent and mature HA-tagged proteins in vivo," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    3. Jeremy Vicencio & Carlos Sánchez-Bolaños & Ismael Moreno-Sánchez & David Brena & Charles E. Vejnar & Dmytro Kukhtar & Miguel Ruiz-López & Mariona Cots-Ponjoan & Alejandro Rubio & Natalia Rodrigo Meler, 2022. "Genome editing in animals with minimal PAM CRISPR-Cas9 enzymes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Brian Ciruna & Andreas Jenny & Diana Lee & Marek Mlodzik & Alexander F. Schier, 2006. "Planar cell polarity signalling couples cell division and morphogenesis during neurulation," Nature, Nature, vol. 439(7073), pages 220-224, January.
    5. Henner F. Farin & Ingrid Jordens & Mohammed H. Mosa & Onur Basak & Jeroen Korving & Daniele V. F. Tauriello & Karin de Punder & Stephane Angers & Peter J. Peters & Madelon M. Maurice & Hans Clevers, 2016. "Visualization of a short-range Wnt gradient in the intestinal stem-cell niche," Nature, Nature, vol. 530(7590), pages 340-343, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enara Larrañaga & Miquel Marin-Riera & Aina Abad-Lázaro & David Bartolomé-Català & Aitor Otero & Vanesa Fernández-Majada & Eduard Batlle & James Sharpe & Samuel Ojosnegros & Jordi Comelles & Elena Mar, 2025. "Long-range organization of intestinal 2D-crypts using exogenous Wnt3a micropatterning," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    2. Yu Zhang & Yang Liu & Wei Qin & Shaohui Zheng & Jiawang Xiao & Xinxin Xia & Xuanyao Yuan & Jingjing Zeng & Yu Shi & Yan Zhang & Hui Ma & Gaurav K. Varshney & Ji-Feng Fei & Yanmei Liu, 2024. "Cytosine base editors with increased PAM and deaminase motif flexibility for gene editing in zebrafish," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Kanako Matsumoto & Yuki Akieda & Yukinari Haraoka & Naoki Hirono & Hiroshi Sasaki & Tohru Ishitani, 2024. "Foxo3-mediated physiological cell competition ensures robust tissue patterning throughout vertebrate development," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Dean J. Kareemo & Christina S. Winborn & Samantha S. Olah & Carley N. Miller & JungMin Kim & Chelsie A. Kadgien & Hannah S. Actor-Engel & Harrison J. Ramsay & Austin M. Ramsey & Jason Aoto & Matthew J, 2024. "Genetically encoded intrabody probes for labeling and manipulating AMPA-type glutamate receptors," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Marion Rosello & Malo Serafini & Luca Mignani & Dario Finazzi & Carine Giovannangeli & Marina C. Mione & Jean-Paul Concordet & Filippo Del Bene, 2022. "Disease modeling by efficient genome editing using a near PAM-less base editor in vivo," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Daniel Strebinger & Chris J. Frangieh & Mirco J. Friedrich & Guilhem Faure & Rhiannon K. Macrae & Feng Zhang, 2023. "Cell type-specific delivery by modular envelope design," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Xu Wang & Siqi Li & Yuan Liu & Xiangyu Kuang & Jianxin Chen & Pei Yu & Lianzheng Zhao & Ze Zhang & Meimei Huang & Liansheng Liu & Mengxian Zhang & Yalong Wang & Weizhi Ji & Jinsong Li & Lei Zhang & Ye, 2025. "Positional BMP signaling orchestrates villus length in the small intestine," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    8. Malgorzata J. Latallo & Shaopeng Wang & Daoyuan Dong & Blake Nelson & Nathan M. Livingston & Rong Wu & Ning Zhao & Timothy J. Stasevich & Michael C. Bassik & Shuying Sun & Bin Wu, 2023. "Single-molecule imaging reveals distinct elongation and frameshifting dynamics between frames of expanded RNA repeats in C9ORF72-ALS/FTD," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Jiajun Xu & Ningning Zhu & Yijing Du & Tianyang Han & Xue Zheng & Jia Li & Shoujun Zhu, 2024. "Biomimetic NIR-II fluorescent proteins created from chemogenic protein-seeking dyes for multicolor deep-tissue bioimaging," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Charlotte A. Cialek & Gabriel Galindo & Tatsuya Morisaki & Ning Zhao & Taiowa A. Montgomery & Timothy J. Stasevich, 2022. "Imaging translational control by Argonaute with single-molecule resolution in live cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Maria Jussila & Curtis W. Boswell & Nigel W. Griffiths & Patrick G. Pumputis & Brian Ciruna, 2022. "Live imaging and conditional disruption of native PCP activity using endogenously tagged zebrafish sfGFP-Vangl2," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Lance T. Denes & Chase P. Kelley & Eric T. Wang, 2021. "Microtubule-based transport is essential to distribute RNA and nascent protein in skeletal muscle," Nature Communications, Nature, vol. 12(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61003-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.