IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61000-z.html
   My bibliography  Save this article

Marine phytoplankton and sea-ice initiated convection drive spatiotemporal differences in Arctic summertime mercury rebound

Author

Listed:
  • Fange Yue

    (University of Science and Technology of China)

  • Hélène Angot

    (IGE)

  • Hongwei Liu

    (University of Science and Technology of China)

  • Zhouqing Xie

    (University of Science and Technology of China)

Abstract

Gaseous elemental mercury (GEM) concentrations in the Arctic exhibit a distinct rebound during the summer months, with notable spatiotemporal variations observed in this phenomenon; however, the underlying mechanisms remain poorly understood. On the basis of targeted cruise observations from the Bering Strait to the North Pole, this study captured the summertime GEM rebound in the Pacific sector of the Arctic Ocean. Moreover, we identified synchronous increases in dissolved gaseous mercury (DGM) concentrations during the GEM rebound in the Marginal Ice Zone (MIZ). Combined with Generalized Additive Model (GAM) simulations, we confirm that oceanic mercury emissions from the MIZ contribute to this phenomenon. We also show that the spatiotemporal variability of dissolved organic components associated with phytoplankton, along with local atmospheric convection triggered by sea-ice melting in the MIZ, plays a crucial role in the observed spatiotemporal differences in the GEM rebound. In the context of rapid Arctic warming, with expected increases in primary productivity and more frequent local convection, the air‒sea exchange of mercury is likely to intensify, amplifying the summertime “mercury source” effect in the Arctic Ocean.

Suggested Citation

  • Fange Yue & Hélène Angot & Hongwei Liu & Zhouqing Xie, 2025. "Marine phytoplankton and sea-ice initiated convection drive spatiotemporal differences in Arctic summertime mercury rebound," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61000-z
    DOI: 10.1038/s41467-025-61000-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61000-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61000-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shaojian Huang & Tengfei Yuan & Zhengcheng Song & Ruirong Chang & Dong Peng & Peng Zhang & Ling Li & Peipei Wu & Guiyao Zhou & Fange Yue & Zhouqing Xie & Feiyue Wang & Yanxu Zhang, 2025. "Oceanic evasion fuels Arctic summertime rebound of atmospheric mercury and drives transport to Arctic terrestrial ecosystems," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    2. Christopher W. Moore & Daniel Obrist & Alexandra Steffen & Ralf M. Staebler & Thomas A. Douglas & Andreas Richter & Son V. Nghiem, 2014. "Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice," Nature, Nature, vol. 506(7486), pages 81-84, February.
    3. Beatriz Ferreira Araujo & Stefan Osterwalder & Natalie Szponar & Domenica Lee & Mariia V. Petrova & Jakob Boyd Pernov & Shaddy Ahmed & Lars-Eric Heimbürger-Boavida & Laure Laffont & Roman Teisserenc &, 2022. "Mercury isotope evidence for Arctic summertime re-emission of mercury from the cryosphere," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Jessie M. Creamean & Kevin Barry & Thomas C. J. Hill & Carson Hume & Paul J. DeMott & Matthew D. Shupe & Sandro Dahlke & Sascha Willmes & Julia Schmale & Ivo Beck & Clara J. M. Hoppe & Allison Fong & , 2022. "Author Correction: Annual cycle observations of aerosols capable of ice formation in central Arctic clouds," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    5. Fange Yue & Hélène Angot & Byron Blomquist & Julia Schmale & Clara J. M. Hoppe & Ruibo Lei & Matthew D. Shupe & Liyang Zhan & Jian Ren & Hailong Liu & Ivo Beck & Dean Howard & Tuija Jokinen & Tiia Lau, 2023. "The Marginal Ice Zone as a dominant source region of atmospheric mercury during central Arctic summertime," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Jessie M. Creamean & Kevin Barry & Thomas C. J. Hill & Carson Hume & Paul J. DeMott & Matthew D. Shupe & Sandro Dahlke & Sascha Willmes & Julia Schmale & Ivo Beck & Clara J. M. Hoppe & Allison Fong & , 2022. "Annual cycle observations of aerosols capable of ice formation in central Arctic clouds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaojian Huang & Tengfei Yuan & Zhengcheng Song & Ruirong Chang & Dong Peng & Peng Zhang & Ling Li & Peipei Wu & Guiyao Zhou & Fange Yue & Zhouqing Xie & Feiyue Wang & Yanxu Zhang, 2025. "Oceanic evasion fuels Arctic summertime rebound of atmospheric mercury and drives transport to Arctic terrestrial ecosystems," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    2. Gabriel Pereira Freitas & Kouji Adachi & Franz Conen & Dominic Heslin-Rees & Radovan Krejci & Yutaka Tobo & Karl Espen Yttri & Paul Zieger, 2023. "Regionally sourced bioaerosols drive high-temperature ice nucleating particles in the Arctic," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Xinran Qiu & Maodian Liu & Yuanzheng Zhang & Qianru Zhang & Huiming Lin & Xingrui Cai & Jin Li & Rong Dai & Shuxiu Zheng & Jinghang Wang & Yaqi Zhu & Huizhong Shen & Guofeng Shen & Xuejun Wang & Shu T, 2025. "Declines in anthropogenic mercury emissions in the Global North and China offset by the Global South," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    4. Fange Yue & Hélène Angot & Byron Blomquist & Julia Schmale & Clara J. M. Hoppe & Ruibo Lei & Matthew D. Shupe & Liyang Zhan & Jian Ren & Hailong Liu & Ivo Beck & Dean Howard & Tuija Jokinen & Tiia Lau, 2023. "The Marginal Ice Zone as a dominant source region of atmospheric mercury during central Arctic summertime," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Jens Søndergaard & Bo Elberling & Christian Sonne & Martin Mørk Larsen & Rune Dietz, 2025. "Stable isotopes unveil ocean transport of legacy mercury into Arctic food webs," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    6. Hailong Li & Fanyue Meng & Penglin Zhu & Hongxiao Zu & Zequn Yang & Wenqi Qu & Jianping Yang, 2024. "Biomimetic mercury immobilization by selenium functionalized polyphenylene sulfide fabric," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Zhengcheng Song & Shaojian Huang & Yujuan Wang & Peng Zhang & Tengfei Yuan & Kaihui Tang & Xuewu Fu & Yanxu Zhang, 2025. "Atmospheric source of mercury to the ocean constrained by isotopic model," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    8. Seung Hyeon Lim & Younggwang Kim & Laura C. Motta & Eun Jin Yang & Tae Siek Rhee & Jong Kuk Hong & Seunghee Han & Sae Yun Kwon, 2024. "Near surface oxidation of elemental mercury leads to mercury exposure in the Arctic Ocean biota," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Beatriz Ferreira Araujo & Stefan Osterwalder & Natalie Szponar & Domenica Lee & Mariia V. Petrova & Jakob Boyd Pernov & Shaddy Ahmed & Lars-Eric Heimbürger-Boavida & Laure Laffont & Roman Teisserenc &, 2022. "Mercury isotope evidence for Arctic summertime re-emission of mercury from the cryosphere," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61000-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.