IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60934-8.html
   My bibliography  Save this article

Generation of mature epicardium derived from human-induced pluripotent stem cells via inhibition of mTOR signaling

Author

Listed:
  • Yu Tian

    (Kyoto University
    Kyoto University)

  • Antonio Lucena-Cacace

    (Kyoto University
    The University of Osaka)

  • Kanae Tani

    (Kyoto University
    Kyoto University)

  • Amanda Putri Elvandari

    (Kyoto University)

  • Rodolfo S. Allendes Osorio
  • Megumi Narita

    (Kyoto University)

  • Yasuko Matsumura

    (Kyoto University)

  • Ian Costa Paixao

    (Kyoto University)

  • Yutaro Miyoshi

    (Kyoto University
    Kyoto University)

  • Azusa Inagaki

    (Kyoto University)

  • Julia Junghof

    (Kyoto University
    Kyoto University)

  • Yoshinori Yoshida

    (Kyoto University)

Abstract

Reactivating the human epicardium post-cardiac injury holds promise for cardiac tissue regeneration. Despite successful differentiation protocols yielding pure, self-renewing epicardial cells from induced pluripotent stem cells (iPSCs), these cells maintain an embryonic, proliferative state, impeding adult epicardial reactivation investigation. We introduce an optimized method that employs mammalian target of rapamycin (mTOR) signaling inhibition in embryonic epicardium, inducing a quiescent state that enhances multi-step epicardial maturation. This yields functionally mature epicardium, valuable for modeling adult epicardial reactivation. Furthermore, we assess cardiac organoids with cardiomyocytes and mature epicardium, probing molecular mechanisms governing epicardial quiescence during cardiac maturation. Our results highlight iPSC-derived mature epicardium’s potential in investigating adult epicardial reactivation, pivotal for effective cardiac regeneration. Additionally, the cardiac organoid model offers insight into intricate cardiomyocyte-epicardium interactions in cardiac development and regeneration.

Suggested Citation

  • Yu Tian & Antonio Lucena-Cacace & Kanae Tani & Amanda Putri Elvandari & Rodolfo S. Allendes Osorio & Megumi Narita & Yasuko Matsumura & Ian Costa Paixao & Yutaro Miyoshi & Azusa Inagaki & Julia Jungho, 2025. "Generation of mature epicardium derived from human-induced pluripotent stem cells via inhibition of mTOR signaling," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60934-8
    DOI: 10.1038/s41467-025-60934-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60934-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60934-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicola Smart & Catherine A. Risebro & Athalie A. D. Melville & Kelvin Moses & Robert J. Schwartz & Kenneth R. Chien & Paul R. Riley, 2007. "Thymosin β4 induces adult epicardial progenitor mobilization and neovascularization," Nature, Nature, vol. 445(7124), pages 177-182, January.
    2. Yonatan R. Lewis-Israeli & Aaron H. Wasserman & Mitchell A. Gabalski & Brett D. Volmert & Yixuan Ming & Kristen A. Ball & Weiyang Yang & Jinyun Zou & Guangming Ni & Natalia Pajares & Xanthippi Chatzis, 2021. "Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    3. Mariana A. Branco & Tiago P. Dias & Joaquim M. S. Cabral & Perpetua Pinto-do-Ó & Maria Margarida Diogo, 2022. "Human multilineage pro-epicardium/foregut organoids support the development of an epicardium/myocardium organoid," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Kenji Miki & Kohei Deguchi & Misato Nakanishi-Koakutsu & Antonio Lucena-Cacace & Shigeru Kondo & Yuya Fujiwara & Takeshi Hatani & Masako Sasaki & Yuki Naka & Chikako Okubo & Megumi Narita & Ikue Takei, 2021. "ERRγ enhances cardiac maturation with T-tubule formation in human iPSC-derived cardiomyocytes," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian Fernandes & Shunsuke Funakoshi & Homaira Hamidzada & Slava Epelman & Gordon Keller, 2023. "Modeling cardiac fibroblast heterogeneity from human pluripotent stem cell-derived epicardial cells," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Pengcheng Yang & Lihang Zhu & Shiya Wang & Jixing Gong & Jonathan Nimal Selvaraj & Lincai Ye & Hanxiao Chen & Yaoyao Zhang & Gongxin Wang & Wanjun Song & Zilong Li & Lin Cai & Hao Zhang & Donghui Zhan, 2024. "Engineered model of heart tissue repair for exploring fibrotic processes and therapeutic interventions," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    3. Gautham Yepuri & Lisa M. Ramirez & Gregory G. Theophall & Sergei V. Reverdatto & Nosirudeen Quadri & Syed Nurul Hasan & Lei Bu & Devi Thiagarajan & Robin Wilson & Raquel López Díez & Paul F. Gugger & , 2023. "DIAPH1-MFN2 interaction regulates mitochondria-SR/ER contact and modulates ischemic/hypoxic stress," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    4. Mariana A. Branco & Tiago P. Dias & Joaquim M. S. Cabral & Perpetua Pinto-do-Ó & Maria Margarida Diogo, 2022. "Human multilineage pro-epicardium/foregut organoids support the development of an epicardium/myocardium organoid," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Maksymilian Prondzynski & Paul Berkson & Michael A. Trembley & Yashasvi Tharani & Kevin Shani & Raul H. Bortolin & Mason E. Sweat & Joshua Mayourian & Dogacan Yucel & Albert M. Cordoves & Beatrice Gab, 2024. "Efficient and reproducible generation of human iPSC-derived cardiomyocytes and cardiac organoids in stirred suspension systems," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Brett Volmert & Artem Kiselev & Aniwat Juhong & Fei Wang & Ashlin Riggs & Aleksandra Kostina & Colin O’Hern & Priyadharshni Muniyandi & Aaron Wasserman & Amanda Huang & Yonatan Lewis-Israeli & Vishal , 2023. "A patterned human primitive heart organoid model generated by pluripotent stem cell self-organization," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    7. Bas Loo & Simone A. Den & Nuno Araújo-Gomes & Vincent Jong & Rebecca R. Snabel & Maik Schot & José M. Rivera-Arbeláez & Gert Jan C. Veenstra & Robert Passier & Tom Kamperman & Jeroen Leijten, 2023. "Mass production of lumenogenic human embryoid bodies and functional cardiospheres using in-air-generated microcapsules," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60934-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.