IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60927-7.html
   My bibliography  Save this article

Engineering STING Nanoadjuvants for spatiotemporally-tailored innate immunity stimulation and cancer vaccination therapy

Author

Listed:
  • Fangmin Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Huijuan Zhang

    (Chinese Academy of Sciences)

  • Shiqin Li

    (Chinese Academy of Sciences)

  • Siyuan Ren

    (Chinese Academy of Sciences
    Nanjing University of Chinese Medicine)

  • Lujia Huang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhixiong Cai

    (Mengchao Hepatobiliary Hospital of Fujian Medical University)

  • Lichen Yin

    (Soochow University)

  • Mingyue Zheng

    (Chinese Academy of Sciences)

  • Xiaolong Liu

    (Mengchao Hepatobiliary Hospital of Fujian Medical University)

  • Zhiai Xu

    (East China Normal University)

  • Haijun Yu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Nanjing University of Chinese Medicine
    Yantai Institute of Materia Medica)

Abstract

Spatiotemporally-tailored activation of dendritic cells (DC) in lymph nodes (LN) remains a critical challenge for effective cancer vaccination therapy. In this study, we show that photo/sonodynamic effect can trigger the nuclear transcription factor-kappa B (NF-κB) and stimulator of interferon genes (STING) pathways activation in DC. We engineers a library of spatiotemporally-tailored STING nanoadjuvants (SNA) by conjugating the photo/sonosensitizer and STING agonist onto the biodegradable polypeptide, and co-assembling with charge-modified polypeptides. The combination of antigen-loaded SNA vaccine (SNVac) with laser irradiation or ultrasound stimulation (namely SNVac-L or SNVac-US) efficiently facilitates DC activation and induces antigen-specific CD8+ T cell response in vivo comparing to the free mixture of antigen with STING agonist. We further demonstrate that SNVac-L monotherapy or combination therapy with immune checkpoint blockade (ICB) elicits antitumor immunity to reduce tumor size and prevent tumor relapse in multiple mouse tumor models. This study thus provides a potential translational strategy for spatiotemporally-tailored innate immunity stimulation of DC to potentiate cancer immunotherapy.

Suggested Citation

  • Fangmin Chen & Huijuan Zhang & Shiqin Li & Siyuan Ren & Lujia Huang & Zhixiong Cai & Lichen Yin & Mingyue Zheng & Xiaolong Liu & Zhiai Xu & Haijun Yu, 2025. "Engineering STING Nanoadjuvants for spatiotemporally-tailored innate immunity stimulation and cancer vaccination therapy," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60927-7
    DOI: 10.1038/s41467-025-60927-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60927-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60927-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaotu Ma & Xiaolong Liang & Yao Li & Qingqing Feng & Keman Cheng & Nana Ma & Fei Zhu & Xinjing Guo & Yale Yue & Guangna Liu & Tianjiao Zhang & Jie Liang & Lei Ren & Xiao Zhao & Guangjun Nie, 2023. "Modular-designed engineered bacteria for precision tumor immunotherapy via spatiotemporal manipulation by magnetic field," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    2. Yongjiang Li & Wei Chen & Yong Kang & Xueyan Zhen & Zhuoming Zhou & Chuang Liu & Shuying Chen & Xiangang Huang & Hai-Jun Liu & Seyoung Koo & Na Kong & Xiaoyuan Ji & Tian Xie & Wei Tao, 2023. "Nanosensitizer-mediated augmentation of sonodynamic therapy efficacy and antitumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Xiaotu Ma & Xiaolong Liang & Yao Li & Qingqing Feng & Keman Cheng & Nana Ma & Fei Zhu & Xinjing Guo & Yale Yue & Guangna Liu & Tianjiao Zhang & Jie Liang & Lei Ren & Xiao Zhao & Guangjun Nie, 2023. "Author Correction: Modular-designed engineered bacteria for precision tumor immunotherapy via spatiotemporal manipulation by magnetic field," Nature Communications, Nature, vol. 14(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke-Fei Xu & Shun-Yu Wu & Zihao Wang & Yuxin Guo & Ya-Xuan Zhu & Chengcheng Li & Bai-Hui Shan & Xinping Zhang & Xiaoyang Liu & Fu-Gen Wu, 2024. "Hyperbaric oxygen enhances tumor penetration and accumulation of engineered bacteria for synergistic photothermal immunotherapy," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    2. Jianwen Song & He Wang & Xue Meng & Wen Li & Ji Qi, 2024. "A hypoxia-activated and microenvironment-remodeling nanoplatform for multifunctional imaging and potentiated immunotherapy of cancer," Nature Communications, Nature, vol. 15(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60927-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.