IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60854-7.html
   My bibliography  Save this article

All-printed chip-less wearable neuromorphic system for multimodal physicochemical health monitoring

Author

Listed:
  • Yongsuk Choi

    (California Institute of Technology
    Sungkyunkwan University)

  • Peng Jin

    (California Institute of Technology)

  • Sanghyun Lee

    (California Institute of Technology
    Yonsei University)

  • Yu Song

    (California Institute of Technology)

  • Roland Yingjie Tay

    (California Institute of Technology)

  • Gwangmook Kim

    (California Institute of Technology)

  • Jounghyun Yoo

    (California Institute of Technology)

  • Hong Han

    (California Institute of Technology)

  • Jeonghee Yeom

    (California Institute of Technology
    Sungkyunkwan University)

  • Jeong Ho Cho

    (Yonsei University)

  • Dong-Hwan Kim

    (Sungkyunkwan University)

  • Wei Gao

    (California Institute of Technology)

Abstract

Recent advancements in wearable sensor technologies have enabled real-time monitoring of physiological and biochemical signals, opening new opportunities for personalized healthcare applications. However, conventional wearable devices often depend on rigid electronics components for signal transduction, processing, and wireless communications, leading to compromised signal quality due to the mechanical mismatches with the soft, flexible nature of human skin. Additionally, current computing technologies face substantial challenges in efficiently processing these vast datasets, with limitations in scalability, high power consumption, and a heavy reliance on external internet resources, which also poses security risks. To address these challenges, we have developed a miniaturized, standalone, chip-less wearable neuromorphic system capable of simultaneously monitoring, processing, and analyzing multimodal physicochemical biomarker data (i.e., metabolites, cardiac activities, and core body temperature). By leveraging scalable printing technology, we fabricated artificial synapses that function as both sensors and analog processing units, integrating them alongside printed synaptic nodes into a compact wearable system embedded with a medical diagnostic algorithm for multimodal data processing and decision making. The feasibility of this flexible wearable neuromorphic system was demonstrated in sepsis diagnosis and patient data classification, highlighting the potential of this wearable technology for real-time medical diagnostics.

Suggested Citation

  • Yongsuk Choi & Peng Jin & Sanghyun Lee & Yu Song & Roland Yingjie Tay & Gwangmook Kim & Jounghyun Yoo & Hong Han & Jeonghee Yeom & Jeong Ho Cho & Dong-Hwan Kim & Wei Gao, 2025. "All-printed chip-less wearable neuromorphic system for multimodal physicochemical health monitoring," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60854-7
    DOI: 10.1038/s41467-025-60854-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60854-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60854-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei Gao & Sam Emaminejad & Hnin Yin Yin Nyein & Samyuktha Challa & Kevin Chen & Austin Peck & Hossain M. Fahad & Hiroki Ota & Hiroshi Shiraki & Daisuke Kiriya & Der-Hsien Lien & George A. Brooks & Ron, 2016. "Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis," Nature, Nature, vol. 529(7587), pages 509-514, January.
    2. Hongjie Hu & Hao Huang & Mohan Li & Xiaoxiang Gao & Lu Yin & Ruixiang Qi & Ray S. Wu & Xiangjun Chen & Yuxiang Ma & Keren Shi & Chenghai Li & Timothy M. Maus & Brady Huang & Chengchangfeng Lu & Muyang, 2023. "A wearable cardiac ultrasound imager," Nature, Nature, vol. 613(7945), pages 667-675, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew S. Brown & Louis Somma & Melissa Mendoza & Yeonsik Noh & Gretchen J. Mahler & Ahyeon Koh, 2022. "Upcycling Compact Discs for Flexible and Stretchable Bioelectronic Applications," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Alp Timucin Toymus & Umut Can Yener & Emine Bardakci & Özgür Deniz Temel & Ersin Koseoglu & Dincay Akcoren & Burak Eminoglu & Mohsin Ali & Rasim Kilic & Tufan Tarcan & Levent Beker, 2024. "An integrated and flexible ultrasonic device for continuous bladder volume monitoring," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yangshuang Bian & Mingliang Zhu & Chengyu Wang & Kai Liu & Wenkang Shi & Zhiheng Zhu & Mingcong Qin & Fan Zhang & Zhiyuan Zhao & Hanlin Wang & Yunqi Liu & Yunlong Guo, 2024. "A detachable interface for stable low-voltage stretchable transistor arrays and high-resolution X-ray imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Liu, Jiaping & Qi, Yu & Ke, Juyang & Zhao, Yicong & Li, Xiaoqing & Yu, Yang & Sun, Xuyang & Guo, Rui, 2024. "Mechanically programmable substrate enable highly stretchable solar cell arrays for self-powered electronic skin," Applied Energy, Elsevier, vol. 367(C).
    5. Lisha Liu & Jiaojiao Yi & Kun Xu & Zhen Liu & Mingmeng Tang & Le Dai & Xuan Gao & Yang Liu & Shuhao Wang & Zhang Zhang & Liang Shu & Jing-Feng Li & Shujun Zhang & Yaojin Wang, 2024. "High piezoelectric property with exceptional stability in self-poled ferroelectric films," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Hyeonyeob Seo & Gun-Hee Lee & Jiwoo Park & Dong-Yeong Kim & Yeonzu Son & Semin Kim & Kum Seok Nam & Congqi Yang & Joonhee Won & Jae-Young Bae & Hyunjun Kim & Seung-Kyun Kang & Steve Park & Jiheong Kan, 2025. "Self-packaged stretchable printed circuits with ligand-bound liquid metal particles in elastomer," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    7. Xun Zhao & Yihao Zhou & William Kwak & Aaron Li & Shaolei Wang & Marklin Dallenger & Songyue Chen & Yuqi Zhang & Allison Lium & Jun Chen, 2024. "A reconfigurable and conformal liquid sensor for ambulatory cardiac monitoring," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Hangfeng Zhang & Zilong Li & Yichen Wang & A. Dominic Fortes & Theo Graves Saunders & Yang Hao & Isaac Abrahams & Haixue Yan & Lei Su, 2025. "Phase transformation in lead titanate based relaxor ferroelectrics with ultra-high strain," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    9. Sangha Kim & Seongjin Park & Jina Choi & Wonseop Hwang & Sunho Kim & In-Suk Choi & Hyunjung Yi & Rhokyun Kwak, 2022. "An epifluidic electronic patch with spiking sweat clearance for event-driven perspiration monitoring," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Jian Li & Shengxin Jia & Dengfeng Li & Lung Chow & Qiang Zhang & Yiyuan Yang & Xiao Bai & Qingao Qu & Yuyu Gao & Zhiyuan Li & Zongze Li & Rui Shi & Binbin Zhang & Ya Huang & Xinyu Pan & Yue Hu & Zhan , 2024. "Wearable bio-adhesive metal detector array (BioMDA) for spinal implants," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Xi Tian & Qihang Zeng & Selman A. Kurt & Renee R. Li & Dat T. Nguyen & Ze Xiong & Zhipeng Li & Xin Yang & Xiao Xiao & Changsheng Wu & Benjamin C. K. Tee & Denys Nikolayev & Christopher J. Charles & Jo, 2023. "Implant-to-implant wireless networking with metamaterial textiles," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Itsuki Kageyama & Karin Kurata & Shuto Miyashita & Yeongjoo Lim & Shintaro Sengoku & Kota Kodama, 2022. "A Bibliometric Analysis of Wearable Device Research Trends 2001–2022—A Study on the Reversal of Number of Publications and Research Trends in China and the USA," IJERPH, MDPI, vol. 19(24), pages 1-19, December.
    13. Veronica Martins Gnecco & Ilaria Pigliautile & Anna Laura Pisello, 2024. "Empowering human–environment well‐being through wearable sensing: Unveiling trends and addressing gaps in the energy transition," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(3), May.
    14. Bin Yang & Haonan Wang & Jilie Kong & Xueen Fang, 2024. "Long-term monitoring of ultratrace nucleic acids using tetrahedral nanostructure-based NgAgo on wearable microneedles," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Taemin Kim & Yejee Shin & Kyowon Kang & Kiho Kim & Gwanho Kim & Yunsu Byeon & Hwayeon Kim & Yuyan Gao & Jeong Ryong Lee & Geonhui Son & Taeseong Kim & Yohan Jun & Jihyun Kim & Jinyoung Lee & Seyun Um , 2022. "Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Guanhua Long & Wanlin Jin & Fan Xia & Yuru Wang & Tianshun Bai & Xingxing Chen & Xuelei Liang & Lian-Mao Peng & Youfan Hu, 2022. "Carbon nanotube-based flexible high-speed circuits with sub-nanosecond stage delays," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Shun An & Hanrui Zhu & Chunzhi Guo & Benwei Fu & Chengyi Song & Peng Tao & Wen Shang & Tao Deng, 2022. "Noncontact human-machine interaction based on hand-responsive infrared structural color," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Yonghuan Chen & Xiuying Li & Xinru Yue & Weihua Yu & Yuesen Shi & Zilong He & Yuanfeng Wang & Yu Huang & Fan Xia & Fengyu Li, 2025. "Sub-femtomolar drug monitoring via co-calibration mechanism with nanoconfined DNA probes," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    19. Bangfeng Wang & Yiwei Li & Mengfan Zhou & Yulong Han & Mingyu Zhang & Zhaolong Gao & Zetai Liu & Peng Chen & Wei Du & Xingcai Zhang & Xiaojun Feng & Bi-Feng Liu, 2023. "Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    20. Xingcan Huang & Qiang Zhang & Yawen Yang & Lung Chow & Jie Ma & Guoqiang Xu & Fang Guo & Xinxin He & Zhiyuan Li & Guangyao Zhao & Jingyou Su & Guihuan Guo & Jiachen Wang & Yanli Jiao & Zhan Gao & Jiyu, 2025. "A skin-interfaced three-dimensional closed-loop sensing and therapeutic electronic wound bandage," Nature Communications, Nature, vol. 16(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60854-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.