IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60814-1.html
   My bibliography  Save this article

Slow and highly confined plasmons observed in atomically thin TaS2

Author

Listed:
  • Hue T. B. Do

    (National University of Singapore
    Agency for Science, Technology and Research (A*STAR)
    National University of Singapore)

  • Meng Zhao

    (Agency for Science, Technology and Research (A*STAR))

  • Pengfei Li

    (National University of Singapore)

  • Yu Wei Soh

    (Agency for Science, Technology and Research (A*STAR))

  • Jagadesh Rangaraj

    (National University of Singapore
    Agency for Science, Technology and Research (A*STAR))

  • Bingyan Liu

    (Nanyang Technological University)

  • Tianyu Jiang

    (Agency for Science, Technology and Research (A*STAR)
    Nanyang Technological University)

  • Xinyue Zhang

    (National University of Singapore
    Agency for Science, Technology and Research (A*STAR))

  • Jiong Lu

    (National University of Singapore)

  • Peng Song

    (Nanyang Technological University)

  • Jinghua Teng

    (Agency for Science, Technology and Research (A*STAR))

  • Michel Bosman

    (National University of Singapore
    Agency for Science, Technology and Research (A*STAR))

Abstract

Extreme light confinement down to the atomic scale has been theoretically predicted for ultrathin, Ta-based transition metal dichalcogenides (TMDs). In this work, we report the observation of highly confined plasmons in 2H-TaS2 monolayers and bilayers via momentum-resolved electron energy loss spectroscopy (q-EELS), with a resolution of 0.0056 Å−1. Momentum-dispersed two-dimensional (2D) plasmon resonances were found to exhibit a lateral confinement ratio up to 300 at large wave vectors of q = 0.15 Å−1 and slow light behaviour with a group velocity ~10-4c. Moreover, we observed a transition from 2D to 3D Coulomb interaction in the high-momentum regime, equivalent to light confinement volumes of 1-2 nm3. Remarkably, the resonant modes do not enter the electron-hole continuum, potentially enabling even further enhanced optical field confinements for this material at cryogenic temperatures.

Suggested Citation

  • Hue T. B. Do & Meng Zhao & Pengfei Li & Yu Wei Soh & Jagadesh Rangaraj & Bingyan Liu & Tianyu Jiang & Xinyue Zhang & Jiong Lu & Peng Song & Jinghua Teng & Michel Bosman, 2025. "Slow and highly confined plasmons observed in atomically thin TaS2," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60814-1
    DOI: 10.1038/s41467-025-60814-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60814-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60814-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mingjian Wu & Christina Harreiß & Colin Ophus & Manuel Johnson & Rainer H. Fink & Erdmann Spiecker, 2022. "Seeing structural evolution of organic molecular nano-crystallites using 4D scanning confocal electron diffraction (4D-SCED)," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. G. X. Ni & A. S. McLeod & Z. Sun & L. Wang & L. Xiong & K. W. Post & S. S. Sunku & B.-Y. Jiang & J. Hone & C. R. Dean & M. M. Fogler & D. N. Basov, 2018. "Fundamental limits to graphene plasmonics," Nature, Nature, vol. 557(7706), pages 530-533, May.
    3. Z. Fei & A. S. Rodin & G. O. Andreev & W. Bao & A. S. McLeod & M. Wagner & L. M. Zhang & Z. Zhao & M. Thiemens & G. Dominguez & M. M. Fogler & A. H. Castro Neto & C. N. Lau & F. Keilmann & D. N. Basov, 2012. "Gate-tuning of graphene plasmons revealed by infrared nano-imaging," Nature, Nature, vol. 487(7405), pages 82-85, July.
    4. Chaoyu Song & Xiang Yuan & Ce Huang & Shenyang Huang & Qiaoxia Xing & Chong Wang & Cheng Zhang & Yuangang Xie & Yuchen Lei & Fanjie Wang & Lei Mu & Jiasheng Zhang & Faxian Xiu & Hugen Yan, 2021. "Plasmons in the van der Waals charge-density-wave material 2H-TaSe2," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Yue Luo & Rebecca Engelke & Marios Mattheakis & Michele Tamagnone & Stephen Carr & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Philip Kim & William L. Wilson, 2020. "In situ nanoscale imaging of moiré superlattices in twisted van der Waals heterostructures," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    6. Morten N. Gjerding & Mohnish Pandey & Kristian S. Thygesen, 2017. "Band structure engineered layered metals for low-loss plasmonics," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    7. Ondrej L. Krivanek & Tracy C. Lovejoy & Niklas Dellby & Toshihiro Aoki & R. W. Carpenter & Peter Rez & Emmanuel Soignard & Jiangtao Zhu & Philip E. Batson & Maureen J. Lagos & Ray F. Egerton & Peter A, 2014. "Vibrational spectroscopy in the electron microscope," Nature, Nature, vol. 514(7521), pages 209-212, October.
    8. Xuezhi Ma & Qiushi Liu & Ning Yu & Da Xu & Sanggon Kim & Zebin Liu & Kaili Jiang & Bryan M. Wong & Ruoxue Yan & Ming Liu, 2021. "6 nm super-resolution optical transmission and scattering spectroscopic imaging of carbon nanotubes using a nanometer-scale white light source," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    9. Jianing Chen & Michela Badioli & Pablo Alonso-González & Sukosin Thongrattanasiri & Florian Huth & Johann Osmond & Marko Spasenović & Alba Centeno & Amaia Pesquera & Philippe Godignon & Amaia Zurutuza, 2012. "Optical nano-imaging of gate-tunable graphene plasmons," Nature, Nature, vol. 487(7405), pages 77-81, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Egor I. Kiselev & Mark S. Rudner & Netanel H. Lindner, 2024. "Inducing exceptional points, enhancing plasmon quality and creating correlated plasmon states with modulated Floquet parametric driving," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Sang Hyun Park & Michael Sammon & Eugene Mele & Tony Low, 2022. "Plasmonic gain in current biased tilted Dirac nodes," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Daniel J. Rizzo & Eric Seewald & Fangzhou Zhao & Jordan Cox & Kaichen Xie & Rocco A. Vitalone & Francesco L. Ruta & Daniel G. Chica & Yinming Shao & Sara Shabani & Evan J. Telford & Matthew C. Strasbo, 2025. "Engineering anisotropic electrodynamics at the graphene/CrSBr interface," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    4. Hai Hu & Renwen Yu & Hanchao Teng & Debo Hu & Na Chen & Yunpeng Qu & Xiaoxia Yang & Xinzhong Chen & A. S. McLeod & Pablo Alonso-González & Xiangdong Guo & Chi Li & Ziheng Yao & Zhenjun Li & Jianing Ch, 2022. "Active control of micrometer plasmon propagation in suspended graphene," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Eva Arianna Aurelia Pogna & Leonardo Viti & Antonio Politano & Massimo Brambilla & Gaetano Scamarcio & Miriam Serena Vitiello, 2021. "Mapping propagation of collective modes in Bi2Se3 and Bi2Te2.2Se0.8 topological insulators by near-field terahertz nanoscopy," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Lei Zhou & Xiang Ni & Zerui Wang & Enrico M. Renzi & Junbo Xu & Zhou Zhou & Yu Yin & Yanzhen Yin & Renkang Song & Zhichen Zhao & Ke Yu & Di Huang & Zhanshan Wang & Xinbin Cheng & Andrea Alù & Tao Jian, 2025. "Engineering shear polaritons in 2D twisted heterostructures," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    7. Jiangtao Lv & Yingjie Wu & Jingying Liu & Youning Gong & Guangyuan Si & Guangwei Hu & Qing Zhang & Yupeng Zhang & Jian-Xin Tang & Michael S. Fuhrer & Hongsheng Chen & Stefan A. Maier & Cheng-Wei Qiu &, 2023. "Hyperbolic polaritonic crystals with configurable low-symmetry Bloch modes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Hongwei Wang & Anshuman Kumar & Siyuan Dai & Xiao Lin & Zubin Jacob & Sang-Hyun Oh & Vinod Menon & Evgenii Narimanov & Young Duck Kim & Jian-Ping Wang & Phaedon Avouris & Luis Martin Moreno & Joshua C, 2024. "Planar hyperbolic polaritons in 2D van der Waals materials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Christoph W. Zollitsch & Safe Khan & Vu Thanh Trung Nam & Ivan A. Verzhbitskiy & Dimitrios Sagkovits & James O’Sullivan & Oscar W. Kennedy & Mara Strungaru & Elton J. G. Santos & John J. L. Morton & G, 2023. "Probing spin dynamics of ultra-thin van der Waals magnets via photon-magnon coupling," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Shuai Zhang & Yang Liu & Zhiyuan Sun & Xinzhong Chen & Baichang Li & S. L. Moore & Song Liu & Zhiying Wang & S. E. Rossi & Ran Jing & Jordan Fonseca & Birui Yang & Yinming Shao & Chun-Ying Huang & Tak, 2023. "Visualizing moiré ferroelectricity via plasmons and nano-photocurrent in graphene/twisted-WSe2 structures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Hao Jiang & Jintao Fu & Jingxuan Wei & Shaojuan Li & Changbin Nie & Feiying Sun & Qing Yang Steve Wu & Mingxiu Liu & Zhaogang Dong & Xingzhan Wei & Weibo Gao & Cheng-Wei Qiu, 2024. "Synergistic-potential engineering enables high-efficiency graphene photodetectors for near- to mid-infrared light," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Eva A. A. Pogna & Valentino Pistore & Leonardo Viti & Lianhe Li & A. Giles Davies & Edmund H. Linfield & Miriam S. Vitiello, 2024. "Near-field detection of gate-tunable anisotropic plasmon polaritons in black phosphorus at terahertz frequencies," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Ni Zhang & Weiwei Luo & Lei Wang & Jiang Fan & Wei Wu & Mengxin Ren & Xinzheng Zhang & Wei Cai & Jingjun Xu, 2022. "Strong in-plane scattering of acoustic graphene plasmons by surface atomic steps," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    14. Yanze Feng & Runkun Chen & Junbo He & Liujian Qi & Yanan Zhang & Tian Sun & Xudan Zhu & Weiming Liu & Weiliang Ma & Wanfu Shen & Chunguang Hu & Xiaojuan Sun & Dabing Li & Rongjun Zhang & Peining Li & , 2023. "Visible to mid-infrared giant in-plane optical anisotropy in ternary van der Waals crystals," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Yaolong Li & Yuxin Zhang & Weizhe Zhang & Xiaofang Li & Jinglin Tang & Jingying Xiao & Guanyu Zhang & Xin Liao & Pengzuo Jiang & Qinyun Liu & Yijie Luo & Zini Cao & Qinghong Lyu & Yuanbiao Tong & Ruox, 2025. "Broadband near-infrared hyperbolic polaritons in MoOCl2," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    16. Souvik Bhattacharya & Jonathan Boyd & Sven Reichardt & Valentin Allard & Amir Hossein Talebi & Nicolò Maccaferri & Olga Shenderova & Aude L. Lereu & Ludger Wirtz & Giuseppe Strangi & R. Mohan Sankaran, 2025. "Intervalence plasmons in boron-doped diamond," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    17. Ruijuan Xu & Iris Crassee & Hans A. Bechtel & Yixi Zhou & Adrien Bercher & Lukas Korosec & Carl Willem Rischau & Jérémie Teyssier & Kevin J. Crust & Yonghun Lee & Stephanie N. Gilbert Corder & Jiarui , 2024. "Highly confined epsilon-near-zero and surface phonon polaritons in SrTiO3 membranes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Shu Chen & Andrei Bylinkin & Zhengtianye Wang & Martin Schnell & Greeshma Chandan & Peining Li & Alexey Y. Nikitin & Stephanie Law & Rainer Hillenbrand, 2022. "Real-space nanoimaging of THz polaritons in the topological insulator Bi2Se3," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Y. Dong & Z. Sun & I. Y. Phinney & D. Sun & T. I. Andersen & L. Xiong & Y. Shao & S. Zhang & Andrey Rikhter & S. Liu & P. Jarillo-Herrero & P. Kim & C. R. Dean & A. J. Millis & M. M. Fogler & D. A. Ba, 2025. "Current-driven nonequilibrium electrodynamics in graphene revealed by nano-infrared imaging," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    20. Yves Auad & Eduardo J. C. Dias & Marcel Tencé & Jean-Denis Blazit & Xiaoyan Li & Luiz Fernando Zagonel & Odile Stéphan & Luiz H. G. Tizei & F. Javier García de Abajo & Mathieu Kociak, 2023. "μeV electron spectromicroscopy using free-space light," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60814-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.