Author
Listed:
- Maryada
(University of Zurich and ETH Zurich)
- Saray Soldado-Magraner
(University of California)
- Martino Sorbaro
(University of Zurich and ETH Zurich
ETH Zurich
Liceo Scientifico “Arturo Tosi”)
- Rodrigo Laje
(Universidad Nacional de Quilmes
CONICET)
- Dean V. Buonomano
(University of California)
- Giacomo Indiveri
(University of Zurich and ETH Zurich)
Abstract
Many neural computations emerge from self-sustained patterns of activity in recurrent neural circuits, which rely on balanced excitation and inhibition. Neuromorphic electronic circuits represent a promising approach for implementing the brain’s computational primitives. However, achieving the same robustness of biological networks in neuromorphic systems remains a challenge due to the variability in their analog components. Inspired by real cortical networks, we apply a biologically-plausible cross-homeostatic rule to balance neuromorphic implementations of spiking recurrent networks. We demonstrate how this rule can autonomously tune the network to produce robust, self-sustained dynamics in an inhibition-stabilized regime, even in presence of device mismatch. It can implement multiple, co-existing stable memories, with emergent soft-winner-take-all and reproduce the “paradoxical effect” observed in cortical circuits. In addition to validating neuroscience models on a substrate sharing many similar limitations with biological systems, this enables the automatic configuration of ultra-low power, mixed-signal neuromorphic technologies despite the large chip-to-chip variability.
Suggested Citation
Maryada & Saray Soldado-Magraner & Martino Sorbaro & Rodrigo Laje & Dean V. Buonomano & Giacomo Indiveri, 2025.
"Stable recurrent dynamics in heterogeneous neuromorphic computing systems using excitatory and inhibitory plasticity,"
Nature Communications, Nature, vol. 16(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60697-2
DOI: 10.1038/s41467-025-60697-2
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60697-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.