IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60605-8.html
   My bibliography  Save this article

Assembly and the gating mechanism of the Pel exopolysaccharide export complex PelBC of Pseudomonas aeruginosa

Author

Listed:
  • Marius Benedens

    (Heinrich Heine University Düsseldorf)

  • Cristian Rosales-Hernandez

    (Ludwig Maximilian University of Munich)

  • Sabine A. P. Straathof

    (University of Groningen)

  • Jennifer Loschwitz

    (Heinrich Heine University Düsseldorf)

  • Otto Berninghausen

    (Ludwig Maximilian University of Munich)

  • Giovanni Maglia

    (University of Groningen)

  • Roland Beckmann

    (Ludwig Maximilian University of Munich)

  • Alexej Kedrov

    (Heinrich Heine University Düsseldorf
    Heinrich Heine University Düsseldorf)

Abstract

The pathogen Pseudomonas aeruginosa enhances its virulence and antibiotic resistance upon formation of durable biofilms. The exopolysaccharides Pel, Psl and alginate essentially contribute to the biofilm matrix, but their secretion mechanisms are barely understood. Here, we reveal the architecture of the outer membrane complex PelBC for Pel export, where the essential periplasmic ring of twelve lipoproteins PelC is mounted on top of the nanodisc-embedded β-barrel PelB. The PelC assembly is stabilized by electrostatic contacts with the periplasmic rim of PelB and via the membrane-anchored acyl chains. The negatively charged interior of the PelB β-barrel forms a route for the cationic Pel exopolysaccharide. The β-barrel is sealed at the extracellular side, but molecular dynamic simulations suggest that the short loop Plug-S is sufficiently flexible to open a tunnel for the exopolysaccharide transport. This gating model is corroborated by single-channel conductivity measurements, where a deletion of Plug-S renders a constitutively open β-barrel. Our structural and functional analysis offers a comprehensive view on this pathogenicity-relevant complex and suggests the route taken by the exopolysaccharide at the final secretion step.

Suggested Citation

  • Marius Benedens & Cristian Rosales-Hernandez & Sabine A. P. Straathof & Jennifer Loschwitz & Otto Berninghausen & Giovanni Maglia & Roland Beckmann & Alexej Kedrov, 2025. "Assembly and the gating mechanism of the Pel exopolysaccharide export complex PelBC of Pseudomonas aeruginosa," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60605-8
    DOI: 10.1038/s41467-025-60605-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60605-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60605-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Parveen Goyal & Petya V. Krasteva & Nani Van Gerven & Francesca Gubellini & Imke Van den Broeck & Anastassia Troupiotis-Tsaïlaki & Wim Jonckheere & Gérard Péhau-Arnaudet & Jerome S. Pinkner & Matthew , 2014. "Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG," Nature, Nature, vol. 516(7530), pages 250-253, December.
    2. Jacob L. W. Morgan & Joanna Strumillo & Jochen Zimmer, 2013. "Crystallographic snapshot of cellulose synthesis and membrane translocation," Nature, Nature, vol. 493(7431), pages 181-186, January.
    3. T. Bertie Ansell & Wanling Song & Claire E. Coupland & Loic Carrique & Robin A. Corey & Anna L. Duncan & C. Keith Cassidy & Maxwell M. G. Geurts & Tim Rasmussen & Andrew B. Ward & Christian Siebold & , 2023. "LipIDens: simulation assisted interpretation of lipid densities in cryo-EM structures of membrane proteins," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Itxaso Anso & Samira Zouhir & Thibault Géry Sana & Petya Violinova Krasteva, 2024. "Structural basis for synthase activation and cellulose modification in the E. coli Type II Bcs secretion system," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Hema M. Swasthi & Joseph L. Basalla & Claire E. Dudley & Anthony G. Vecchiarelli & Matthew R. Chapman, 2023. "Cell surface-localized CsgF condensate is a gatekeeper in bacterial curli subunit secretion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Gašper Šolinc & Marija Srnko & Franci Merzel & Ana Crnković & Mirijam Kozorog & Marjetka Podobnik & Gregor Anderluh, 2025. "Cryo-EM structures of a protein pore reveal a cluster of cholesterol molecules and diverse roles of membrane lipids," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    4. Jaroslaw Sedzicki & Dongchun Ni & Frank Lehmann & Henning Stahlberg & Christoph Dehio, 2024. "Structure-function analysis of the cyclic β-1,2-glucan synthase from Agrobacterium tumefaciens," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Jialu Li & Huayi Liu & Jian Li & Juxiu Liu & Xinli Dai & Angqi Zhu & Qingjie Xiao & Wenyu Qian & Honghao Li & Li Guo & Chuangye Yan & Dong Deng & Yunzi Luo & Xiang Wang, 2025. "Cryo-EM structure of the β-1,3-glucan synthase FKS1-Rho1 complex," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    6. Shu-Chieh Chang & Mu-Rong Kao & Rebecka Karmakar Saldivar & Sara M. Díaz-Moreno & Xiaohui Xing & Valentina Furlanetto & Johannes Yayo & Christina Divne & Francisco Vilaplana & D. Wade Abbott & Yves S., 2023. "The Gram-positive bacterium Romboutsia ilealis harbors a polysaccharide synthase that can produce (1,3;1,4)-β-d-glucans," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Preeti Verma & Ruoya Ho & Schuyler A. Chambers & Lynette Cegelski & Jochen Zimmer, 2024. "Insights into phosphoethanolamine cellulose synthesis and secretion across the Gram-negative cell envelope," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Qingshan Luo & Chengai Wang & Shuai Qiao & Shan Yu & Lianwan Chen & Seonghoon Kim & Kun Wang & Jiangge Zheng & Yong Zhang & Fan Wu & Xiaoguang Lei & Jizhong Lou & Michael Hennig & Wonpil Im & Long Mia, 2025. "Surface lipoprotein sorting by crosstalk between Lpt and Lol pathways in gram-negative bacteria," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    9. Dan-Dan Chen & Zhao-Bin Wang & Le-Xuan Wang & Peng Zhao & Cai-Hong Yun & Lin Bai, 2023. "Structure, catalysis, chitin transport, and selective inhibition of chitin synthase," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60605-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.