IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60600-z.html
   My bibliography  Save this article

Transient inhibition of cell division in competent pneumococcal cells results from deceleration of the septal peptidoglycan complex

Author

Listed:
  • Dimitri Juillot

    (Micalis Institute
    Centre Nationale de la Recherche Scientifique
    Université Paul Sabatier (Toulouse III))

  • Cyrille Billaudeau

    (Micalis Institute)

  • Isabelle Mortier-Barrière

    (Centre Nationale de la Recherche Scientifique
    Université Paul Sabatier (Toulouse III))

  • Aurélien Barbotin

    (Micalis Institute)

  • Armand Lablaine

    (Micalis Institute)

  • Patrice Polard

    (Centre Nationale de la Recherche Scientifique
    Université Paul Sabatier (Toulouse III))

  • Nathalie Campo

    (Centre Nationale de la Recherche Scientifique
    Université Paul Sabatier (Toulouse III))

  • Rut Carballido-López

    (Micalis Institute)

Abstract

Membrane protein ComM transiently inhibits cell division during the development of the competence state in the pathogenic bacterium Streptococcus pneumoniae, but the underlying molecular mechanisms remain unclear. Here we show that, in competent cells, ComM moves together with, and reduces the speed of, septal peptidoglycan synthetic complex FtsW:PBP2x. ComM directly interacts with the putative FtsW:PBP2x activator DivIB, and overproduction of DivIB counteracts FtsW:PBP2x deceleration along the cell division delay in competent cells. Our results support a model in which ComM reduces septal peptidoglycan synthesis by interfering with DivIB activity during competence in S. pneumoniae.

Suggested Citation

  • Dimitri Juillot & Cyrille Billaudeau & Isabelle Mortier-Barrière & Aurélien Barbotin & Armand Lablaine & Patrice Polard & Nathalie Campo & Rut Carballido-López, 2025. "Transient inhibition of cell division in competent pneumococcal cells results from deceleration of the septal peptidoglycan complex," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60600-z
    DOI: 10.1038/s41467-025-60600-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60600-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60600-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. João M. Monteiro & Ana R. Pereira & Nathalie T. Reichmann & Bruno M. Saraiva & Pedro B. Fernandes & Helena Veiga & Andreia C. Tavares & Margarida Santos & Maria T. Ferreira & Vânia Macário & Michael S, 2018. "Peptidoglycan synthesis drives an FtsZ-treadmilling-independent step of cytokinesis," Nature, Nature, vol. 554(7693), pages 528-532, February.
    2. Joshua W. McCausland & Xinxing Yang & Georgia R. Squyres & Zhixin Lyu & Kevin E. Bruce & Melissa M. Lamanna & Bill Söderström & Ethan C. Garner & Malcolm E. Winkler & Jie Xiao & Jian Liu, 2021. "Treadmilling FtsZ polymers drive the directional movement of sPG-synthesis enzymes via a Brownian ratchet mechanism," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Marc Prudhomme & Calum H. G. Johnston & Anne-Lise Soulet & Anne Boyeldieu & David Lemos & Nathalie Campo & Patrice Polard, 2024. "Pneumococcal competence is a populational health sensor driving multilevel heterogeneity in response to antibiotics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Kevin D. Whitley & Calum Jukes & Nicholas Tregidgo & Eleni Karinou & Pedro Almada & Yann Cesbron & Ricardo Henriques & Cees Dekker & Séamus Holden, 2021. "FtsZ treadmilling is essential for Z-ring condensation and septal constriction initiation in Bacillus subtilis cell division," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junso Fujita & Hiroshi Amesaka & Takuya Yoshizawa & Kota Hibino & Natsuki Kamimura & Natsuko Kuroda & Takamoto Konishi & Yuki Kato & Mizuho Hara & Tsuyoshi Inoue & Keiichi Namba & Shun-ichi Tanaka & H, 2023. "Structures of a FtsZ single protofilament and a double-helical tube in complex with a monobody," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Zhixin Lyu & Atsushi Yahashiri & Xinxing Yang & Joshua W. McCausland & Gabriela M. Kaus & Ryan McQuillen & David S. Weiss & Jie Xiao, 2022. "FtsN maintains active septal cell wall synthesis by forming a processive complex with the septum-specific peptidoglycan synthases in E. coli," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Han Gong & Di Yan & Yuanyuan Cui & Ying Li & Jize Yang & Wenjie Yang & Rui Zhan & Qianqian Wan & Xinci Wang & Haofeng He & Xiangdong Chen & Joe Lutkenhaus & Xinxing Yang & Shishen Du, 2024. "The divisome is a self-enhancing machine in Escherichia coli and Caulobacter crescentus," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Bill Söderström & Matthew J. Pittorino & Daniel O. Daley & Iain G. Duggin, 2022. "Assembly dynamics of FtsZ and DamX during infection-related filamentation and division in uropathogenic E. coli," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Olga Iwańska & Przemysław Latoch & Mariia Kovalenko & Małgorzata Lichocka & Joanna Hołówka & Remigiusz Serwa & Agata Grzybowska & Jolanta Zakrzewska-Czerwińska & Agata L. Starosta, 2025. "Ribosomes translocation into the spore of Bacillus subtilis is highly organised and requires peptidoglycan rearrangements," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    6. Brooke M. Britton & Remy A. Yovanno & Sara F. Costa & Joshua McCausland & Albert Y. Lau & Jie Xiao & Zach Hensel, 2023. "Conformational changes in the essential E. coli septal cell wall synthesis complex suggest an activation mechanism," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Huijia Yin & Yang Liu & Ying Zhao & Pengyue Chen & Zengyi Chang, 2025. "A FtsZ cis disassembly element acts in Z-ring assembly during bacterial cell division," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    8. Jaana Männik & Prathitha Kar & Chathuddasie Amarasinghe & Ariel Amir & Jaan Männik, 2024. "Determining the rate-limiting processes for cell division in Escherichia coli," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Junso Fujita & Kazuki Kasai & Kota Hibino & Gota Kagoshima & Natsuki Kamimura & Shungo Tobita & Yuki Kato & Ryo Uehara & Keiichi Namba & Takayuki Uchihashi & Hiroyoshi Matsumura, 2025. "Structural basis for the interaction between the bacterial cell division proteins FtsZ and ZapA," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    10. Christoph Spahn & Stuart Middlemiss & Estibaliz Gómez-de-Mariscal & Ricardo Henriques & Helge B. Bode & Séamus Holden & Mike Heilemann, 2025. "The nucleoid of rapidly growing Escherichia coli localizes close to the inner membrane and is organized by transcription, translation, and cell geometry," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    11. Philipp Radler & Natalia Baranova & Paulo Caldas & Christoph Sommer & Mar López-Pelegrín & David Michalik & Martin Loose, 2022. "In vitro reconstitution of Escherichia coli divisome activation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Ryan McQuillen & Amilcar J. Perez & Xinxing Yang & Christopher H. Bohrer & Erika L. Smith & Sylvia Chareyre & Ho-Ching Tiffany Tsui & Kevin E. Bruce & Yin Mon Hla & Joshua W. McCausland & Malcolm E. W, 2024. "Light-dependent modulation of protein localization and function in living bacteria cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60600-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.