IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60462-5.html
   My bibliography  Save this article

Distinct spatially organized striatum-wide acetylcholine dynamics for the learning and extinction of Pavlovian associations

Author

Listed:
  • Safa Bouabid

    (Boston University
    Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network)

  • Liangzhu Zhang

    (Boston University)

  • Mai-Anh T. Vu

    (Boston University
    Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network)

  • Kylie Tang

    (Boston University)

  • Benjamin M. Graham

    (Boston University)

  • Christian A. Noggle

    (Boston University)

  • Mark W. Howe

    (Boston University
    Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network)

Abstract

Striatal acetylcholine (ACh) signaling is thought to counteract reinforcement signals, promoting extinction and behavioral flexibility. Changes in striatal ACh signals have been reported during learning, but how ACh signals for learning and extinction are spatially organized to enable region-specific plasticity is unclear. We used array photometry in mice to reveal a topography of opposing changes in ACh release across distinct striatal regions. Reward prediction error encoding was localized to specific phases of ACh dynamics in anterior dorsal striatum (aDS): positive and negative prediction errors were expressed in dips and elevations respectively. Silencing ACh release in aDS impaired extinction, suggesting a role for ACh elevations in down-regulating cue-reward associations. Dopamine release in aDS dipped for cues during extinction, inverse to ACh, while glutamate input onto cholinergic interneurons was unchanged. These findings pinpoint where and suggest an intrastriatal mechanism for how ACh dynamics shape region-specific plasticity to gate learning and promote extinction.

Suggested Citation

  • Safa Bouabid & Liangzhu Zhang & Mai-Anh T. Vu & Kylie Tang & Benjamin M. Graham & Christian A. Noggle & Mark W. Howe, 2025. "Distinct spatially organized striatum-wide acetylcholine dynamics for the learning and extinction of Pavlovian associations," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60462-5
    DOI: 10.1038/s41467-025-60462-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60462-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60462-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sanaya N. Shroff & Eric Lowet & Sudiksha Sridhar & Howard J. Gritton & Mohammed Abumuaileq & Hua-An Tseng & Cyrus Cheung & Samuel L. Zhou & Krishnakanth Kondabolu & Xue Han, 2023. "Striatal cholinergic interneuron membrane voltage tracks locomotor rhythms in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. M. W. Howe & D. A. Dombeck, 2016. "Rapid signalling in distinct dopaminergic axons during locomotion and reward," Nature, Nature, vol. 535(7613), pages 505-510, July.
    3. John N. J. Reynolds & Brian I. Hyland & Jeffery R. Wickens, 2001. "A cellular mechanism of reward-related learning," Nature, Nature, vol. 413(6851), pages 67-70, September.
    4. Will Dabney & Zeb Kurth-Nelson & Naoshige Uchida & Clara Kwon Starkweather & Demis Hassabis & Rémi Munos & Matthew Botvinick, 2020. "A distributional code for value in dopamine-based reinforcement learning," Nature, Nature, vol. 577(7792), pages 671-675, January.
    5. Anne C. Krok & Marta Maltese & Pratik Mistry & Xiaolei Miao & Yulong Li & Nicolas X. Tritsch, 2023. "Intrinsic dopamine and acetylcholine dynamics in the striatum of mice," Nature, Nature, vol. 621(7979), pages 543-549, September.
    6. Lynne Chantranupong & Celia C. Beron & Joshua A. Zimmer & Michelle J. Wen & Wengang Wang & Bernardo L. Sabatini, 2023. "Dopamine and glutamate regulate striatal acetylcholine in decision-making," Nature, Nature, vol. 621(7979), pages 577-585, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lior Matityahu & Naomi Gilin & Gideon A. Sarpong & Yara Atamna & Lior Tiroshi & Nicolas X. Tritsch & Jeffery R. Wickens & Joshua A. Goldberg, 2023. "Acetylcholine waves and dopamine release in the striatum," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    2. Min Jung Kim & Daniel J. Gibson & Dan Hu & Tomoko Yoshida & Emily Hueske & Ayano Matsushima & Ara Mahar & Cynthia J. Schofield & Patlapa Sompolpong & Kathy T. Tran & Lin Tian & Ann M. Graybiel, 2024. "Dopamine release plateau and outcome signals in dorsal striatum contrast with classic reinforcement learning formulations," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. John N. J. Reynolds & Riccardo Avvisati & Paul D. Dodson & Simon D. Fisher & Manfred J. Oswald & Jeffery R. Wickens & Yan-Feng Zhang, 2022. "Coincidence of cholinergic pauses, dopaminergic activation and depolarisation of spiny projection neurons drives synaptic plasticity in the striatum," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Allen P. F. Chen & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Shaoyu Ge & Qiaojie Xiong, 2023. "Nigrostriatal dopamine modulates the striatal-amygdala pathway in auditory fear conditioning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Ayaka Kato & Kenji Morita, 2016. "Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-41, October.
    6. Xiaolong Gao & Huan Wei & Wenjie Ma & Wenjie Wu & Wenliang Ji & Junjie Mao & Ping Yu & Lanqun Mao, 2024. "Inflammation-free electrochemical in vivo sensing of dopamine with atomic-level engineered antioxidative single-atom catalyst," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Leslie J. Sibener & Alice C. Mosberger & Tiffany X. Chen & Vivek R. Athalye & James M. Murray & Rui M. Costa, 2025. "Dissociable roles of distinct thalamic circuits in learning reaches to spatial targets," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    8. Wan-Yu Shih & Hsiang-Yu Yu & Cheng-Chia Lee & Chien-Chen Chou & Chien Chen & Paul W. Glimcher & Shih-Wei Wu, 2023. "Electrophysiological population dynamics reveal context dependencies during decision making in human frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    9. Jérémie Naudé & Matthieu X. B. Sarazin & Sarah Mondoloni & Bernadette Hannesse & Eléonore Vicq & Fabrice Amegandjin & Alexandre Mourot & Philippe Faure & Bruno Delord, 2024. "Dopamine builds and reveals reward-associated latent behavioral attractors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Vincent Paget-Blanc & Marlene E. Pfeffer & Marie Pronot & Paul Lapios & Maria-Florencia Angelo & Roman Walle & Fabrice P. Cordelières & Florian Levet & Stéphane Claverol & Sabrina Lacomme & Mélina Pet, 2022. "A synaptomic analysis reveals dopamine hub synapses in the mouse striatum," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Yosuke Yawata & Yu Shikano & Jun Ogasawara & Kenichi Makino & Tetsuhiko Kashima & Keiko Ihara & Airi Yoshimoto & Shota Morikawa & Sho Yagishita & Kenji F. Tanaka & Yuji Ikegaya, 2023. "Mesolimbic dopamine release precedes actively sought aversive stimuli in mice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Bernard Bloem & Rafiq Huda & Ken-ichi Amemori & Alex S. Abate & Gayathri Krishna & Anna L. Wilson & Cody W. Carter & Mriganka Sur & Ann M. Graybiel, 2022. "Multiplexed action-outcome representation by striatal striosome-matrix compartments detected with a mouse cost-benefit foraging task," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Leo Chi U Seak & Simone Ferrari-Toniolo & Ritesh Jain & Kirby Nielsen & Wolfram Schultz, 2023. "Systematic comparison of risky choices in humans and monkeys," Working Papers 202316, University of Liverpool, Department of Economics.
    14. Minkyu Shin & Jin Kim & Minkyung Kim, 2020. "Measuring Human Adaptation to AI in Decision Making: Application to Evaluate Changes after AlphaGo," Papers 2012.15035, arXiv.org, revised Jan 2021.
    15. Sanaya N. Shroff & Eric Lowet & Sudiksha Sridhar & Howard J. Gritton & Mohammed Abumuaileq & Hua-An Tseng & Cyrus Cheung & Samuel L. Zhou & Krishnakanth Kondabolu & Xue Han, 2023. "Striatal cholinergic interneuron membrane voltage tracks locomotor rhythms in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Ian Cone & Claudia Clopath & Harel Z. Shouval, 2024. "Learning to express reward prediction error-like dopaminergic activity requires plastic representations of time," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. repec:plo:pone00:0115620 is not listed on IDEAS
    18. Laurel S Morris & Agnes Norbury & Derek A Smith & Neil A Harrison & Valerie Voon & James W Murrough, 2020. "Dissociating self-generated volition from externally-generated motivation," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-13, May.
    19. repec:plo:pcbi00:1003377 is not listed on IDEAS
    20. Daniel Serra, 2021. "Decision-making: from neuroscience to neuroeconomics—an overview," Theory and Decision, Springer, vol. 91(1), pages 1-80, July.
    21. Colin W. Hoy & David R. Quiroga-Martinez & Eduardo Sandoval & David King-Stephens & Kenneth D. Laxer & Peter Weber & Jack J. Lin & Robert T. Knight, 2023. "Asymmetric coding of reward prediction errors in human insula and dorsomedial prefrontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    22. Allen P. F. Chen & Jeffrey M. Malgady & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Joshua L. Plotkin & Shaoyu Ge & Qiaojie Xiong, 2022. "Nigrostriatal dopamine pathway regulates auditory discrimination behavior," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60462-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.