IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60435-8.html
   My bibliography  Save this article

Three dimensional multiscalar neurovascular nephron connectivity map of the human kidney across the lifespan

Author

Listed:
  • Liam McLaughlin

    (Washington University School of Medicine)

  • Bo Zhang

    (Washington University School of Medicine)

  • Siddharth Sharma

    (Washington University School of Medicine)

  • Amanda L. Knoten

    (Washington University School of Medicine)

  • Madhurima Kaushal

    (Washington University School of Medicine)

  • Jeffrey M. Purkerson

    (University of Rochester Medical Center)

  • Heidie L. Huyck

    (University of Rochester Medical Center)

  • Gloria S. Pryhuber

    (University of Rochester Medical Center)

  • Joseph P. Gaut

    (Washington University School of Medicine)

  • Sanjay Jain

    (Washington University School of Medicine
    Washington University School of Medicine
    Washington University School of Medicine)

Abstract

The human kidney maintains homeostasis through a complex network of up to a million nephrons, its fundamental tissue units. Using innovative tissue processing and light sheet fluorescence microscopy, we mapped the 3D neurovascular connectivity of nephrons to understand how their structural organization enables coordinated functions like filtration, absorption, and blood pressure regulation. Our analysis revealed developmental changes in glomerular orientation, density, volume, and innervation from birth through aging. We discovered an extensive nerve network connecting different nephron segments and organizing glomeruli into distinct communities. These communities are linked through “mother glomeruli” that serve as control centers, creating a repeating pattern throughout the cortex. This sophisticated neural organization, which is underdeveloped in newborn kidneys and disrupted in conditions like diabetes and hydronephrosis, appears to facilitate synchronized responses to maintain fluid balance. The findings provide insights into how the kidney’s structural architecture enables coordinated function across its numerous nephrons.

Suggested Citation

  • Liam McLaughlin & Bo Zhang & Siddharth Sharma & Amanda L. Knoten & Madhurima Kaushal & Jeffrey M. Purkerson & Heidie L. Huyck & Gloria S. Pryhuber & Joseph P. Gaut & Sanjay Jain, 2025. "Three dimensional multiscalar neurovascular nephron connectivity map of the human kidney across the lifespan," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60435-8
    DOI: 10.1038/s41467-025-60435-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60435-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60435-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. An, Yu & Zhang, Yu & Zeng, Bo, 2015. "The reliable hub-and-spoke design problem: Models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 103-122.
    2. Anna D. Broido & Aaron Clauset, 2019. "Scale-free networks are rare," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Kwanghun Chung & Jenelle Wallace & Sung-Yon Kim & Sandhiya Kalyanasundaram & Aaron S. Andalman & Thomas J. Davidson & Julie J. Mirzabekov & Kelly A. Zalocusky & Joanna Mattis & Aleksandra K. Denisin &, 2013. "Structural and molecular interrogation of intact biological systems," Nature, Nature, vol. 497(7449), pages 332-337, May.
    4. Blue B. Lake & Rajasree Menon & Seth Winfree & Qiwen Hu & Ricardo Melo Ferreira & Kian Kalhor & Daria Barwinska & Edgar A. Otto & Michael Ferkowicz & Dinh Diep & Nongluk Plongthongkum & Amanda Knoten , 2023. "An atlas of healthy and injured cell states and niches in the human kidney," Nature, Nature, vol. 619(7970), pages 585-594, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuzhou Chang & Jixin Liu & Yi Jiang & Anjun Ma & Yao Yu Yeo & Qi Guo & Megan McNutt & Jordan E. Krull & Scott J. Rodig & Dan H. Barouch & Garry P. Nolan & Dong Xu & Sizun Jiang & Zihai Li & Bingqiang , 2024. "Graph Fourier transform for spatial omics representation and analyses of complex organs," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    2. Maximilian Reck & David P. Baird & Stefan Veizades & Callum Sutherland & Rachel M. B. Bell & Heeyoun Hur & Carolynn Cairns & Piotr P. Janas & Ross Campbell & Andy Nam & Wei Yang & Nathan Schurman & Cl, 2025. "Multiomic analysis of human kidney disease identifies a tractable inflammatory and pro-fibrotic tubular cell phenotype," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    3. Martins, Francisco Leonardo Bezerra & do Nascimento, José Cláudio, 2022. "Power law dynamics in genealogical graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    4. Fleming, Sean W., 2021. "Scale-free networks, 1/f dynamics, and nonlinear conflict size scaling from an agent-based simulation model of societal-scale bilateral conflict and cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    5. Wenxu Zhang & Yajuan Li & Anthony A. Fung & Zhi Li & Hongje Jang & Honghao Zha & Xiaoping Chen & Fangyuan Gao & Jane Y. Wu & Huaxin Sheng & Junjie Yao & Dorota Skowronska-Krawczyk & Sanjay Jain & Ling, 2024. "Multi-molecular hyperspectral PRM-SRS microscopy," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Daniel Soudry & Suraj Keshri & Patrick Stinson & Min-hwan Oh & Garud Iyengar & Liam Paninski, 2015. "Efficient "Shotgun" Inference of Neural Connectivity from Highly Sub-sampled Activity Data," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-30, October.
    7. Cheng, Chun & Qi, Mingyao & Zhang, Ying & Rousseau, Louis-Martin, 2018. "A two-stage robust approach for the reliable logistics network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 185-202.
    8. Wei E. Gordon & Seungbyn Baek & Hai P. Nguyen & Yien-Ming Kuo & Rachael Bradley & Sarah L. Fong & Nayeon Kim & Alex Galazyuk & Insuk Lee & Melissa R. Ingala & Nancy B. Simmons & Tony Schountz & Lisa N, 2024. "Integrative single-cell characterization of a frugivorous and an insectivorous bat kidney and pancreas," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    9. D'Acci, Luca S., 2023. "Is housing price distribution across cities, scale invariant? Fractal distribution of settlements' house prices as signature of self-organized complexity," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Kohei Otomo & Takaki Omura & Yuki Nozawa & Steven J. Edwards & Yukihiko Sato & Yuri Saito & Shigehiro Yagishita & Hitoshi Uchida & Yuki Watakabe & Kiyotada Naitou & Rin Yanai & Naruhiko Sahara & Satos, 2024. "descSPIM: an affordable and easy-to-build light-sheet microscope optimized for tissue clearing techniques," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Wandelt, Sebastian & Signori, Andrea & Chang, Shuming & Wang, Shuang & Du, Zhuoming & Sun, Xiaoqian, 2025. "Unleashing the potential of operations research in air transport: A review of applications, methods, and challenges," Journal of Air Transport Management, Elsevier, vol. 124(C).
    12. Meng, Xiangyi & Zhou, Bin, 2023. "Scale-free networks beyond power-law degree distribution," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    13. Nikita Vladimirov & Fabian F. Voigt & Thomas Naert & Gabriela R. Araujo & Ruiyao Cai & Anna Maria Reuss & Shan Zhao & Patricia Schmid & Sven Hildebrand & Martina Schaettin & Dominik Groos & José María, 2024. "Benchtop mesoSPIM: a next-generation open-source light-sheet microscope for cleared samples," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Coulibaly, Saliya & Bessin, Florent & Clerc, Marcel G. & Mussot, Arnaud, 2022. "Precursors-driven machine learning prediction of chaotic extreme pulses in Kerr resonators," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    15. Santiago Mañosas & Aritz Sanz & Cristina Ederra & Ainhoa Urbiola & Elvira Rojas-de-Miguel & Ainhoa Ostiz & Iván Cortés-Domínguez & Natalia Ramírez & Carlos Ortíz-de-Solórzano & Arantxa Villanueva & Ma, 2022. "An Image-Based Framework for the Analysis of the Murine Microvasculature: From Tissue Clarification to Computational Hemodynamics," Mathematics, MDPI, vol. 10(23), pages 1-20, December.
    16. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    17. Joris Wagenaar & Ioannis Fragkos & Rob Zuidwijk, 2021. "Integrated Planning for Multimodal Networks with Disruptions and Customer Service Requirements," Transportation Science, INFORMS, vol. 55(1), pages 196-221, 1-2.
    18. Mohammadi, Mehrdad & Jula, Payman & Tavakkoli-Moghaddam, Reza, 2019. "Reliable single-allocation hub location problem with disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 90-120.
    19. Rumeng Zhang & Lihong Li, 2023. "Research on Evolutionary Game and Simulation of Information Sharing in Prefabricated Building Supply Chain," Sustainability, MDPI, vol. 15(13), pages 1-24, June.
    20. Jingtan Zhu & Xiaomei Liu & Zhang Liu & Yating Deng & Jianyi Xu & Kunxing Liu & Ruiying Zhang & Xizhi Meng & Peng Fei & Tingting Yu & Dan Zhu, 2024. "SOLID: minimizing tissue distortion for brain-wide profiling of diverse architectures," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60435-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.