IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60343-x.html
   My bibliography  Save this article

Mechanism of ATP hydrolysis in the Hsp70 BiP nucleotide-binding domain

Author

Listed:
  • Guillaume Mas

    (University of Basel)

  • Sebastian Hiller

    (University of Basel)

Abstract

The 70 kDa heat shock protein (Hsp70) family of molecular chaperones ensures protein biogenesis and homeostasis, driven by ATP hydrolysis. Here, we introduce in-cyclo NMR, an experimental setup that combines high-resolution NMR spectroscopy with an ATP recovery and a phosphate removal system. In-cyclo NMR simultaneously resolves kinetic rates and structural information along functional cycles of ATP-driven molecular machines. We benchmark the method on the nucleotide binding domain (NBD) of the human Hsp70 chaperone BiP. The protein cycles through ATP binding, hydrolysis, and two parallel pathways of product release. We determine the kinetic rates of all eleven underlying elementary reactions and show these to match independent measurements. The two product release pathways regulate the cycle duration dependent on the products concentration. Under physiological conditions, they are both used. The in-cyclo NMR method will serve as a platform for studies of ATP-driven functional cycles at a remarkable level of detail.

Suggested Citation

  • Guillaume Mas & Sebastian Hiller, 2025. "Mechanism of ATP hydrolysis in the Hsp70 BiP nucleotide-binding domain," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60343-x
    DOI: 10.1038/s41467-025-60343-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60343-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60343-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60343-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.