Author
Listed:
- Shiwei Chen
(3663 North Zhongshan Rd)
- Jiabao Zhu
(3663 North Zhongshan Rd)
- Jifan Li
(3663 North Zhongshan Rd)
- Pan Guo
(Shanghai University)
- Jinrong Yang
(3663 North Zhongshan Rd)
- Xiao He
(3663 North Zhongshan Rd
Chongqing Institute of East China Normal University
New York University Shanghai)
Abstract
Interfacial water activity plays a critical role in governing chemical reactivity and catalytic efficiency, yet a quantitative understanding of how hydrogen-bond (H-bond) network structure influences this reactivity remains limited. Herein, we employ ab initio molecular metadynamics simulations to delineate the relationship between the H-bond network and the reactivity of interfacial water molecules at the slab and nanodroplet systems. Interfacial water at nanodroplets, characterized by microscopic inhomogeneity, tends to adopt a donor–acceptor dimer configuration, in contrast to the more homogeneous H-bond network at the slab. This disparity in local structure, corroborated by the quantified differences in solvation configurational entropy, results in a reduction of the reaction free energy barrier by 1–2 kcal·mol⁻1 at the slab interface, corresponding to an order-of-magnitude enhancement in reaction rate. These results provide a fresh perspective to understand the interfacial water reactivity and highlight the critical role of H-bond network in optimizing catalytic performance.
Suggested Citation
Shiwei Chen & Jiabao Zhu & Jifan Li & Pan Guo & Jinrong Yang & Xiao He, 2025.
"Entropy-driven difference in interfacial water reactivity between slab and nanodroplet,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60298-z
DOI: 10.1038/s41467-025-60298-z
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60298-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.