Author
Listed:
- Zhongchao Zhao
(University of California, San Diego
University of California, San Diego
University of California, San Diego)
- Debbie K. Ledezma
(University of California, San Diego
University of California, San Diego
University of California, San Diego)
- Jessica Fernanda Affonso de Oliveira
(University of California, San Diego
University of California, San Diego
University of California, San Diego)
- Anthony O. Omole
(University of California, San Diego
University of California, San Diego
University of California, San Diego)
- Nicole F. Steinmetz
(University of California, San Diego
University of California, San Diego
University of California, San Diego
University of California, San Diego)
Abstract
Current treatment options for ovarian cancer are limited to surgery to remove tumor tissues and chemotherapy. Although such treatments could provide a short period of remission, most patients still experience recurrent metastatic diseases. Here we present a nanotechnology-based personalized cancer vaccine that can be administrated to patients during the remission stage to prevent recurrent diseases. Autologous tumor cell lysates (TCL) are intriguing, personalized antigens that could be extracted from surgically recovered tumor tissues from patients containing all neoantigens. As proof of concept, we use TCL isolated from a murine ovarian cancer cell line. TCL are first encapsulated in liposomes (TCL-Lip), which are then attached to cowpea mosaic virus (CPMV), a plant virus as a potent adjuvant. Using the ID8-Defb29/Vegf-a-Luc tumor model in female mice, the TCL-Lip-CPMV conjugate vaccine protects mice from tumor challenge by improving antigen processing and presentation, priming an adaptive anti-tumor immunity. Using ovalbumin (OVA) as a model antigen, OVA-Lip-CPMV vaccination protects mice from lung metastasis post-surgical removal of the primary B16F10-OVA dermal tumors. This research establishes a platform by combining two nanoparticle technologies into a single formulation for the simultaneous delivery of antigens and adjuvants, advancing the development of cancer vaccines and immunotherapies.
Suggested Citation
Zhongchao Zhao & Debbie K. Ledezma & Jessica Fernanda Affonso de Oliveira & Anthony O. Omole & Nicole F. Steinmetz, 2025.
"A cowpea mosaic virus adjuvant conjugated to liposomes loaded with tumor cell lysates as an ovarian cancer vaccine,"
Nature Communications, Nature, vol. 16(1), pages 1-17, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60239-w
DOI: 10.1038/s41467-025-60239-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60239-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.