Author
Listed:
- Sanghwi Han
(Seoul National University (SNU))
- Sungjun Kim
(Korea Research Institute of Chemical Technology (KRICT))
- Hye Jin Cho
(Korea Research Institute of Chemical Technology (KRICT))
- Jang Yong Lee
(Konkuk University)
- Jaeyune Ryu
(Seoul National University (SNU)
Institute for Basic Science (IBS)
Seoul National University (SNU))
- Jeyong Yoon
(Seoul National University (SNU)
Seoul National University (SNU))
Abstract
Despite the wide array of oxygen evolution reaction active materials revealed thus far, challenges persist in translating their half-cell scale activities into scalable devices with long-term durability. Here, we present a dynamic polarization control for the continuous electrochemical activation of readily available Ni electrode anodes to achieve sustainable and scalable water electrolysis. Periodic application of a reductive potential between high current density cycles (0.5 or 1 A cm–2) is found to promote and maintain the oxygen evolution activity of Ni electrodes via the incorporation of Fe3+ from KOH electrolytes. This transient polarization strategy successfully extends to an anion exchange membrane water electrolysis system, where a cell voltage of approximately 1.8 V is maintained for over 1000 h under 1 A cm–2. The scalability is further verified by the 25 cm2 3-cell stack system, which lasts for 300 h with negligible voltage loss. Ultimately, this work highlights the power of the dynamic polarization strategy to regulate the dynamic nature of the oxygen evolution interface for sustainable and scalable water electrolysis.
Suggested Citation
Sanghwi Han & Sungjun Kim & Hye Jin Cho & Jang Yong Lee & Jaeyune Ryu & Jeyong Yoon, 2025.
"Dynamic polarization control of Ni electrodes for sustainable and scalable water electrolysis under alkaline conditions,"
Nature Communications, Nature, vol. 16(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60201-w
DOI: 10.1038/s41467-025-60201-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60201-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.