IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60188-4.html
   My bibliography  Save this article

FXYD2 marks and regulates maturity of β cells via ion channel-mediated signal transduction

Author

Listed:
  • Clarissa Tacto

    (The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center)

  • Meghan Tahbaz

    (The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center)

  • Andrew Salib

    (The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center)

  • Shudi Wang

    (The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center)

  • Fritz Cayabyab

    (The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center)

  • Jinhyuk Choi

    (The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center)

  • Kiyoka Kim

    (The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center)

  • Yu Hamba

    (The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center)

  • Harvey Perez

    (The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center)

  • Paul D. Gershon

    (University of California Irvine)

  • Robert Damoiseaux

    (University of California Los Angeles
    University of California Los Angeles
    University of California Los Angeles
    University of California Los Angeles)

  • Tae Gyu Oh

    (University of Oklahoma Health Sciences Center
    University of Oklahoma Health Sciences Center)

  • Eiji Yoshihara

    (The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
    David Geffen School of Medicine at University of California Los Angeles)

Abstract

Human pancreatic islets regulate organ development and metabolic homeostasis, with dysfunction leading to diabetes. Human pluripotent stem cells (hPSCs) provide a potential alternative source to cadaveric human pancreatic islets for replacement therapy in diabetes. However, human islet-like organoids (HILOs) generated from hPSCs in vitro often exhibit heterogeneous immature phenotypes such as aberrant gene expression and inadequate insulin secretion in response to glucose. Here we show that FXYD Domain Containing Ion Transport Regulator 2 (FXYD2) marks and regulates functional maturation and heterogeneity of generated HILOs, by controlling the β cell transcriptome necessary for glucose-stimulated insulin secretion (GSIS). Despite its presence in mature β cells, FXYD2 is diminished in hPSC-derived β-like cells. Mechanistically, we find that FXYD2 physically interacts with SRC proto-oncogene, non-receptor tyrosine kinase (SRC) protein to regulate FXYD2-SRC-TEAD1 signaling to modulate β cell transcriptome. We demonstrate that FXYD2High HILOs significantly outperform FXYD2Low counterparts to improve hyperglycemia in STZ-induced diabetic immune deficient mice. These results suggest that FXYD2 marks and regulates human β cell maturation via channel-sensing signal transduction and that it can be used as a selection marker for functional heterogeneity of stem cell derived human islet organoids.

Suggested Citation

  • Clarissa Tacto & Meghan Tahbaz & Andrew Salib & Shudi Wang & Fritz Cayabyab & Jinhyuk Choi & Kiyoka Kim & Yu Hamba & Harvey Perez & Paul D. Gershon & Robert Damoiseaux & Tae Gyu Oh & Eiji Yoshihara, 2025. "FXYD2 marks and regulates maturity of β cells via ion channel-mediated signal transduction," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60188-4
    DOI: 10.1038/s41467-025-60188-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60188-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60188-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cécile Jacovetti & Scot J. Matkovich & Adriana Rodriguez-Trejo & Claudiane Guay & Romano Regazzi, 2015. "Postnatal β-cell maturation is associated with islet-specific microRNA changes induced by nutrient shifts at weaning," Nature Communications, Nature, vol. 6(1), pages 1-14, November.
    2. Anant Mamidi & Christy Prawiro & Philip A. Seymour & Kristian Honnens Lichtenberg & Abigail Jackson & Palle Serup & Henrik Semb, 2018. "Mechanosignalling via integrins directs fate decisions of pancreatic progenitors," Nature, Nature, vol. 564(7734), pages 114-118, December.
    3. Eiji Yoshihara & Carolyn O’Connor & Emanuel Gasser & Zong Wei & Tae Gyu Oh & Tiffany W. Tseng & Dan Wang & Fritz Cayabyab & Yang Dai & Ruth T. Yu & Christopher Liddle & Annette R. Atkins & Michael Dow, 2020. "Immune-evasive human islet-like organoids ameliorate diabetes," Nature, Nature, vol. 586(7830), pages 606-611, October.
    4. Jia Zhao & Shenghui Liang & Haoning Howard Cen & Yanjun Li & Robert K. Baker & Balwinder Ruprai & Guang Gao & Chloe Zhang & Huixia Ren & Chao Tang & Liangyi Chen & Yanmei Liu & Francis C. Lynn & James, 2024. "PDX1+ cell budding morphogenesis in a stem cell-derived islet spheroid system," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Chen Weng & Anniya Gu & Shanshan Zhang & Leina Lu & Luxin Ke & Peidong Gao & Xiaoxiao Liu & Yuntong Wang & Peinan Hu & Dylan Plummer & Elise MacDonald & Saixian Zhang & Jiajia Xi & Sisi Lai & Konstant, 2023. "Single cell multiomic analysis reveals diabetes-associated β-cell heterogeneity driven by HNF1A," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Brittany L. Smalls & Tiarney D. Ritchwood & Kinfe G. Bishu & Leonard E. Egede, 2020. "Racial/Ethnic Differences in Glycemic Control in Older Adults with Type 2 Diabetes: United States 2003–2014," IJERPH, MDPI, vol. 17(3), pages 1-10, February.
    7. Alex Z. Kadhim & Ben Vanderkruk & Samantha Mar & Meixia Dan & Katarina Zosel & Eric E. Xu & Rachel J. Spencer & Shugo Sasaki & Xuanjin Cheng & Shannon L. J. Sproul & Thilo Speckmann & Cuilan Nian & Ro, 2024. "Transcriptional coactivator MED15 is required for beta cell maturation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Qicheng Ni & Yanyun Gu & Yun Xie & Qinglei Yin & Hongli Zhang & Aifang Nie & Wenyi Li & Yanqiu Wang & Guang Ning & Weiqing Wang & Qidi Wang, 2017. "Raptor regulates functional maturation of murine beta cells," Nature Communications, Nature, vol. 8(1), pages 1-13, August.
    9. Adrian Veres & Aubrey L. Faust & Henry L. Bushnell & Elise N. Engquist & Jennifer Hyoje-Ryu Kenty & George Harb & Yeh-Chuin Poh & Elad Sintov & Mads Gürtler & Felicia W. Pagliuca & Quinn P. Peterson &, 2019. "Charting cellular identity during human in vitro β-cell differentiation," Nature, Nature, vol. 569(7756), pages 368-373, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia Zhao & Shenghui Liang & Haoning Howard Cen & Yanjun Li & Robert K. Baker & Balwinder Ruprai & Guang Gao & Chloe Zhang & Huixia Ren & Chao Tang & Liangyi Chen & Yanmei Liu & Francis C. Lynn & James, 2024. "PDX1+ cell budding morphogenesis in a stem cell-derived islet spheroid system," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Ryan J. Geusz & Allen Wang & Dieter K. Lam & Nicholas K. Vinckier & Konstantinos-Dionysios Alysandratos & David A. Roberts & Jinzhao Wang & Samy Kefalopoulou & Araceli Ramirez & Yunjiang Qiu & Joshua , 2021. "Sequence logic at enhancers governs a dual mechanism of endodermal organ fate induction by FOXA pioneer factors," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    3. Mostafa Bakhti & Aimée Bastidas-Ponce & Sophie Tritschler & Oliver Czarnecki & Marta Tarquis-Medina & Eva Nedvedova & Jessica Jaki & Stefanie J. Willmann & Katharina Scheibner & Perla Cota & Ciro Sali, 2022. "Synaptotagmin-13 orchestrates pancreatic endocrine cell egression and islet morphogenesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Frankie Poon & Rangarajan Sambathkumar & Roman Korytnikov & Yasaman Aghazadeh & Amanda Oakie & Paraish S. Misra & Farida Sarangi & M. Cristina Nostro, 2024. "Tankyrase inhibition promotes endocrine commitment of hPSC-derived pancreatic progenitors," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Yuqian Wang & Renqi Huang & Yougong Lu & Mingqi Liu & Ran Mo, 2024. "Immuno-protective vesicle-crosslinked hydrogel for allogenic transplantation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Vikash Chandra & Hazem Ibrahim & Clémentine Halliez & Rashmi B. Prasad & Federica Vecchio & Om Prakash Dwivedi & Jouni Kvist & Diego Balboa & Jonna Saarimäki-Vire & Hossam Montaser & Tom Barsby & Väin, 2022. "The type 1 diabetes gene TYK2 regulates β-cell development and its responses to interferon-α," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Diksha Pandey & Onkara Perumal P., 2023. "Improved meta-analysis pipeline ameliorates distinctive gene regulators of diabetic vasculopathy in human endothelial cell (hECs) RNA-Seq data," PLOS ONE, Public Library of Science, vol. 18(11), pages 1-20, November.
    8. Xiaojie Ma & Jie Cao & Ziyu Zhou & Yunkun Lu & Qin Li & Yan Jin & Guo Chen & Weiyun Wang & Wenyan Ge & Xi Chen & Zhensheng Hu & Xiao Shu & Qian Deng & Jiaqi Pu & Chengzhen Liang & Junfen Fu & Jianzhao, 2022. "N6-methyladenosine modification-mediated mRNA metabolism is essential for human pancreatic lineage specification and islet organogenesis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Feng Lin & Xia Li & Shiyu Sun & Zhongyi Li & Chenglin Lv & Jianbo Bai & Lin Song & Yizhao Han & Bo Li & Jianping Fu & Yue Shao, 2023. "Mechanically enhanced biogenesis of gut spheroids with instability-driven morphomechanics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Shakti Dahiya & Mohamed Saleh & Uylissa A. Rodriguez & Dhivyaa Rajasundaram & Jorge R. Arbujas & Arian Hajihassani & Kaiyuan Yang & Anuradha Sehrawat & Ranjeet Kalsi & Shiho Yoshida & Krishna Prasadan, 2024. "Acinar to β-like cell conversion through inhibition of focal adhesion kinase," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Jennifer P. Nguyen & Timothy D. Arthur & Kyohei Fujita & Bianca M. Salgado & Margaret K. R. Donovan & Hiroko Matsui & Ji Hyun Kim & Agnieszka D’Antonio-Chronowska & Matteo D’Antonio & Kelly A. Frazer, 2023. "eQTL mapping in fetal-like pancreatic progenitor cells reveals early developmental insights into diabetes risk," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    12. Yinglei Li & Ran Zheng & Lai Jiang & Chenchao Yan & Ran Liu & Luyi Chen & Wenwen Jin & Yuanyuan Luo & Xiafei Zhang & Jun Tang & Zhe Dai & Wei Jiang, 2024. "A noncoding variant confers pancreatic differentiation defect and contributes to diabetes susceptibility by recruiting RXRA," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Ziyi Wang & Siyuan Ge & Tiepeng Liao & Man Yuan & Wenwei Qian & Qi Chen & Wei Liang & Xiawei Cheng & Qinghua Zhou & Zhenyu Ju & Hongying Zhu & Wei Xiong, 2025. "Integrative single-cell metabolomics and phenotypic profiling reveals metabolic heterogeneity of cellular oxidation and senescence," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    14. Myungji Kim & Seungyeun Cho & Dong Gyu Hwang & In Kyong Shim & Song Cheol Kim & Jiwon Jang & Jinah Jang, 2025. "Bioprinting of bespoke islet-specific niches to promote maturation of stem cell-derived islets," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    15. Lihua Chen & Nannan Wang & Tongran Zhang & Feng Zhang & Wei Zhang & Hao Meng & Jingyi Chen & Zhiying Liao & Xiaopeng Xu & Zhuo Ma & Tao Xu & Huisheng Liu, 2024. "Directed differentiation of pancreatic δ cells from human pluripotent stem cells," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    16. Oluwamayokun Oshinowo & Renee Copeland & Anamika Patel & Nina Shaver & Meredith E. Fay & Rebecca Jeltuhin & Yijin Xiang & Christina Caruso & Adiya E. Otumala & Sarah Hernandez & Priscilla Delgado & Ga, 2024. "Autoantibodies immuno-mechanically modulate platelet contractile force and bleeding risk," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Liu Wang & Jie Wu & Madeline Sramek & S. M. Bukola Obayomi & Peidong Gao & Yan Li & Aleksey V. Matveyenko & Zong Wei, 2024. "Heterogeneous enhancer states orchestrate β cell responses to metabolic stress," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    18. Marlie M. Maestas & Matthew Ishahak & Punn Augsornworawat & Daniel A. Veronese-Paniagua & Kristina G. Maxwell & Leonardo Velazco-Cruz & Erica Marquez & Jiameng Sun & Mira Shunkarova & Sarah E. Gale & , 2024. "Identification of unique cell type responses in pancreatic islets to stress," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Qing Ma & Yini Xiao & Wenjun Xu & Menghan Wang & Sheng Li & Zhihao Yang & Minglu Xu & Tengjiao Zhang & Zhen-Ning Zhang & Rui Hu & Qiang Su & Fei Yuan & Tinghui Xiao & Xuan Wang & Qing He & Jiaxu Zhao , 2022. "ZnT8 loss-of-function accelerates functional maturation of hESC-derived β cells and resists metabolic stress in diabetes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    20. Xiaowen Lyu & M. Jordan Rowley & Michael J. Kulik & Stephen Dalton & Victor G. Corces, 2023. "Regulation of CTCF loop formation during pancreatic cell differentiation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60188-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.