Author
Listed:
- Jonathan C. Ho
(University of Pittsburgh
University of Pittsburgh)
- Thandar Aung
(University of Pittsburgh
University of Pittsburgh)
- Arianna Damiani
(University of Pittsburgh
University of Pittsburgh)
- Lilly Tang
(University of Pittsburgh
University of Pittsburgh)
- Arka N. Mallela
(University of Pittsburgh)
- Donald J. Crammond
(University of Pittsburgh
University of Pittsburgh)
- Jorge A. González-Martínez
(University of Pittsburgh
University of Pittsburgh)
Abstract
Epilepsy affects 65 million people worldwide, with 30% suffering from drug-resistant epilepsy. While surgical resection is the primary treatment, its application is limited in generalized epilepsy. Centromedian nucleus neurostimulation offers a promising alternative, yet its mechanisms remain unclear, limiting target optimization. We present a multimodal approach integrating intraoperative thalamic and sub-scalp electroencephalogram recordings with post-implant reconstructions to define neural targets affected by centromedian nucleus stimulation. We find that stimulating low-activity regions near the centromedian nucleus, particularly the white matter of internal medullary lamina, induces significant cortical delta power increases greater than stimulation within high-activity areas inside the nucleus. Implantation in these low-activity targets results in greater than 50% seizure reduction in all three subjects. These findings suggest that seizure control primarily involves stimulating white matter regions such as the internal medullary lamina rather than the centromedian nucleus itself. A personalized, electrophysiology-guided implantation approach may enhance neurostimulation efficacy in drug-resistant epilepsy.
Suggested Citation
Jonathan C. Ho & Thandar Aung & Arianna Damiani & Lilly Tang & Arka N. Mallela & Donald J. Crammond & Jorge A. González-Martínez, 2025.
"Refining centromedian nucleus stimulation for generalized epilepsy with targeting and mechanistic insights from intraoperative electrophysiology,"
Nature Communications, Nature, vol. 16(1), pages 1-8, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60183-9
DOI: 10.1038/s41467-025-60183-9
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60183-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.