IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60163-z.html
   My bibliography  Save this article

The mechanism of acetyl-CoA synthase through the lens of a nickel model system

Author

Listed:
  • Shounak Nath

    (University of Illinois Urbana-Champaign)

  • Leonel Griego

    (University of Illinois Urbana-Champaign)

  • Liviu M. Mirica

    (University of Illinois Urbana-Champaign)

Abstract

Given the urgent need to develop new methods of CO2/CO utilization, understanding the mechanism of acetyl-CoA synthase (ACS)—a primordial nickel-containing enzyme that converts these gases into a source of cellular energy—is crucial; however, conflicting hypotheses and a dearth of well-characterized bioorganometallic intermediates have hindered a proper understanding of its mechanism. Herein, we report a functional model system that supports several organometallic intermediates proposed for ACS, including the long sought-after Ni(methyl)(CO) species, and promotes all key reaction steps during catalysis: methylation, carbonylation, and thiolysis. Our investigations provide the following key mechanistic insights that are directly relevant to ACS: (i) the binding of a second CO molecule to the Ni center promotes migratory insertion, (ii) both paramagnetic and diamagnetic Ni intermediates are involved, (iii) one-electron oxidation of the NiII(acetyl)(thiolate) species drives a fast reductive elimination, and (iv) a random binding order of the methyl and CO groups to the Ni center is feasible.

Suggested Citation

  • Shounak Nath & Leonel Griego & Liviu M. Mirica, 2025. "The mechanism of acetyl-CoA synthase through the lens of a nickel model system," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60163-z
    DOI: 10.1038/s41467-025-60163-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60163-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60163-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60163-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.